August 11, 2023
Dictionary learning, which approximates data samples by a set of shared atoms, is a fundamental task in representation learning. However, dictionary learning over graphs, namely graph dictionary learning (GDL), is much more challenging than vectorial data as graphs lie in disparate metric spaces. The sparse literature on GDL formulates the problem from the reconstructive view and often learns linear graph embeddings with a high computational cost. In this paper, we propose a Fused Gromov-Wasserstein (FGW) Mixture Model named FraMe to address the GDL problem from the generative view. Equipped with the graph generation function based on the radial basis function kernel and FGW distance, FraMe generates nonlinear embedding spaces, which, as we theoretically proved, provide a good approximation of the original graph spaces. A fast solution is further proposed on top of the expectation-maximization algorithm with guaranteed convergence. Extensive experiments demonstrate the effectiveness of the obtained node and graph embeddings, and our algorithm achieves significant improvements over the state-of-the-art methods.
Publisher
ICML
Research Topics
Core Machine Learning
August 12, 2024
Arman Zharmagambetov, Yuandong Tian, Aaron Ferber, Bistra Dilkina, Taoan Huang
August 12, 2024
August 09, 2024
Emily Wenger, Eshika Saxena, Mohamed Malhou, Ellie Thieu, Kristin Lauter
August 09, 2024
August 02, 2024
August 02, 2024
July 29, 2024
Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Saketh Rambhatla, Mian Akbar Shah, Xi Yin, Devi Parikh, Ishan Misra
July 29, 2024
Foundational models
Latest news
Foundational models