CORE MACHINE LEARNING

Generative Graph Dictionary Learning

August 11, 2023

Abstract

Dictionary learning, which approximates data samples by a set of shared atoms, is a fundamental task in representation learning. However, dictionary learning over graphs, namely graph dictionary learning (GDL), is much more challenging than vectorial data as graphs lie in disparate metric spaces. The sparse literature on GDL formulates the problem from the reconstructive view and often learns linear graph embeddings with a high computational cost. In this paper, we propose a Fused Gromov-Wasserstein (FGW) Mixture Model named FraMe to address the GDL problem from the generative view. Equipped with the graph generation function based on the radial basis function kernel and FGW distance, FraMe generates nonlinear embedding spaces, which, as we theoretically proved, provide a good approximation of the original graph spaces. A fast solution is further proposed on top of the expectation-maximization algorithm with guaranteed convergence. Extensive experiments demonstrate the effectiveness of the obtained node and graph embeddings, and our algorithm achieves significant improvements over the state-of-the-art methods.

Download the Paper

AUTHORS

Written by

Zhichen Zeng

Ruike Zhu

Yinglong Xia

Hanqing Zeng

Hanghang Tong

Publisher

ICML

Research Topics

Core Machine Learning

Related Publications

June 11, 2025

ROBOTICS

COMPUTER VISION

CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models

Aaron Foss, Chloe Evans, Sasha Mitts, Koustuv Sinha, Ammar Rizvi, Justine T. Kao

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 11, 2025

June 11, 2025

ROBOTICS

RESEARCH

V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas

June 11, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.