Research

Integrity

Generate, Segment and Refine: Towards Generic Manipulation Segmentation

February 7, 2020

Abstract

Detecting manipulated images has become a significant emerging challenge. The advent of image sharing platforms and the easy availability of advanced photo editing software have resulted in a large quantities of manipulated images being shared on the internet. While the intent behind such manipulations varies widely, concerns on the spread of false news and misinformation is growing. Current state of the art methods for detecting these manipulated images suffers from the lack of training data due to the laborious labeling process. We address this problem in this paper, for which we introduce a manipulated image generation process that creates true positives using currently available datasets. Drawing from traditional work on image blending, we propose a novel generator for creating such examples. In addition, we also propose to further create examples that force the algorithm to focus on boundary artifacts during training. Strong experimental results validate our proposal.

Download the Paper

Related Publications

March 24, 2025

Integrity

Data Taggants: Dataset Ownership Verification Via Harmless Targeted Data Poisoning

Wassim (Wes) Bouaziz, Nicolas Usunier, El Mahdi El Mhamdi

March 24, 2025

February 27, 2025

Integrity

Theory

Logic.py: Bridging the Gap between LLMs and Constraint Solvers

Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral

February 27, 2025

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

February 07, 2020

Integrity

Generate, Segment and Refine: Towards Generic Manipulation Segmentation | Facebook AI Research

Peng Zhou, Bor-Chun Chen, Xintong Han, Mahyar Najibi, Abhinav Shrivastava, Ser-Nam Lim, Larry S. Davis

February 07, 2020

April 30, 2018

Computer Vision

Integrity

Countering Adversarial Images Using Input Transformations | Facebook AI Research

Chuan Guo, Mayank Rana, Moustapha Cisse, Laurens van der Maaten

April 30, 2018

February 24, 2018

Speech & Audio

Computer Vision

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective | Facebook AI Research

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, Xiaodong Wang

February 24, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.