THEORY

CORE MACHINE LEARNING

Generalization Bounds for Deep Transfer Learning Using Majority Predictor Accuracy

November 23, 2022

Abstract

We analyze new generalization bounds for deep learning models trained by transfer learning from a source to a target task. Our bounds utilize a quantity called the majority predictor accuracy, which can be computed efficiently from data. We show that our theory is useful in practice since it implies that the majority predictor accuracy can be used as a transferability measure, a fact that is also validated by our experiments.

Download the Paper

AUTHORS

Written by

Tal Hassner

Cuong N. Nguyen

Cuong V. Nguyen

Lam Si Tung Ho

Vu Dinh

Publisher

The International Symposium on Information Theory and Its Applications (ISITA)

Research Topics

Theory

Core Machine Learning

Related Publications

July 21, 2024

CORE MACHINE LEARNING

From Neurons to Neutrons: A Case Study in Mechanistic Interpretability

Ouail Kitouni, Niklas Nolte, Samuel Pérez Díaz, Sokratis Trifinopoulos, Mike Williams

July 21, 2024

July 08, 2024

THEORY

CORE MACHINE LEARNING

An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes

Antonio Orvieto, Lin Xiao

July 08, 2024

June 17, 2024

HUMAN & MACHINE INTELLIGENCE

COMPUTER VISION

D-Flow: Differentiating through Flows for Controlled Generation

Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, Yaron Lipman

June 17, 2024

June 17, 2024

COMPUTER VISION

CORE MACHINE LEARNING

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Neta Shaul, Uriel Singer, Ricky Chen, Matt Le, Ali Thabet, Albert Pumarola, Yaron Lipman

June 17, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.