CORE MACHINE LEARNING

GenCO: Generating Diverse Designs with Combinatorial Constraints

August 02, 2024

Abstract

Deep generative models like GAN and VAE have shown impressive results in generating unconstrained objects like images. However, many design settings arising in industrial design, material science, computer graphics and more require that the generated objects satisfy hard combinatorial constraints or meet objectives in addition to modeling a data distribution. To address this, we propose GenCO, a generative framework that guarantees constraint satisfaction throughout training by leveraging differentiable combinatorial solvers to enforce feasibility. GenCO imposes the generative loss on provably feasible solutions rather than intermediate soft solutions, meaning that the deep generative network can focus on ensuring the generated objects match the data distribution without having to also capture feasibility. This shift enables practitioners to enforce hard constraints on the generated outputs during end-to-end training, enabling assessments of their feasibility and introducing additional combinatorial loss components to deep generative training. We demonstrate the effectiveness of our approach on a variety of generative combinatorial tasks, including game level generation, map creation for path planning, and photonic device design, consistently demonstrating its capability to yield diverse, high-quality solutions that verifiably adhere to user-specified combinatorial properties.

Download the Paper

AUTHORS

Publisher

ICML

Research Topics

Core Machine Learning

Related Publications

June 13, 2025

FAIRNESS

INTEGRITY

Measuring multi-calibration

Ido Guy, Daniel Haimovich, Fridolin Linder, Nastaran Okati, Lorenzo Perini, Niek Tax, Mark Tygert

June 13, 2025

June 11, 2025

ROBOTICS

COMPUTER VISION

CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models

Aaron Foss, Chloe Evans, Sasha Mitts, Koustuv Sinha, Ammar Rizvi, Justine T. Kao

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 11, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.