June 18, 2023
We present Galactic, a large-scale simulation and reinforcement-learning (RL) framework for robotic mobile manipulation in indoor environments. Specifically, a Fetch robot (equipped with a mobile base, 7DoF arm, RGBD camera, egomotion, and onboard sensing) is spawned in a home environment and asked to rearrange objects – by navigating to an object, picking it up, navigating to a target location, and then placing the object at the target location. Galactic is fast. In terms of simulation speed (rendering + physics), Galactic achieves over 421,000 steps-per-second (SPS) on an 8-GPU node, which is 54x faster than Habitat 2.0 [55] (7699 SPS). More importantly, Galactic was designed to optimize the entire rendering+physics+RL interplay since any bottleneck in the interplay slows down training. In terms of simulation+RL speed (rendering + physics + inference + learning), Galactic achieves over 108,000 SPS, which 88x faster than Habitat 2.0 (1243 SPS). These massive speed-ups not only drastically cut the wall-clock training time of existing experiments, but also unlock an unprecedented scale of new experiments. First, Galactic can train a mobile pick skill to > 80% accuracy in under 16 minutes, a 100x speedup compared to the over 24 hours it takes to train the same skill in Habitat 2.0. Second, we use Galactic to perform the largest-scale experiment to date for rearrangement using 5B steps of experience in 46 hours, which is equivalent to 20 years of robot experience. This scaling results in a single neural network composed of task-agnostic components achieving 85% success in GeometricGoal rearrangement, compared to 0% success reported in Habitat 2.0 for the same approach. The code is available at github.com/facebookresearch/galactic .
Written by
Vincent-Pierre Berges
Andrew Szot
Devendra Singh Chaplot
Aaron Gokaslan
Dhruv Batra
Eric Undersander
Publisher
CVPR
May 04, 2023
Nicklas Hansen, Yixin Lin, Hao Su, Xiaolong Wang, Vikash Kumar, Aravind Rajeswaran
May 04, 2023
March 31, 2023
Ram Ramrakhya, Dhruv Batra, Erik Wijmans, Abhishek Das
March 31, 2023
March 29, 2023
Franziska Meier, Aravind Rajeswaran, Dhruv Batra, Jitendra Malik, Karmesh Yadav, Oleksandr Maksymets, Sergio Arnaud, Sneha Silwal, Vincent-Pierre Berges, Aryan Jain, Claire Chen, Jason Ma, Yixin Lin
March 29, 2023
March 29, 2023
Akshara Rai, Alexander William Clegg, Dhruv Batra, Eric Undersander, Naoki Yokoyama, Sehoon Ha
March 29, 2023
Who We Are
Our Actions
Newsletter