April 29, 2020
Grapheme-based acoustic modeling has recently been shown to outperform phoneme-based approaches in both hybrid and end-to-end automatic speech recognition (ASR), even on non-phonemic languages like English. However, graphemic ASR still has problems with rare long-tail words that do not follow the standard spelling conventions seen in training, such as entity names. In this work, we present a novel method to train a statistical grapheme-to-grapheme (G2G) model on text-to-speech data that can rewrite an arbitrary character sequence into more phonetically consistent forms. We show that using G2G to provide alternative pronunciations during decoding reduces Word Error Rate by 3% to 11% relative over a strong graphemic baseline and bridges the gap on rare name recognition with an equivalent phonetic setup. Unlike many previously proposed methods, our method does not require any change to the acoustic model training procedure. This work reaffirms the efficacy of grapheme-based modeling and shows that specialized linguistic knowledge, when available, can be leveraged to improve graphemic ASR.
Publisher
ICASSP
Research Topics
March 13, 2025
Delong Chen, Samuel Cahyawijaya, Jianfeng Liu, Baoyuan Wang, Pascale Fung
March 13, 2025
February 27, 2025
Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral
February 27, 2025
February 07, 2025
The Omnilingual MT Team, Pierre Andrews, Mikel Artetxe, Mariano Coria Meglioli, Marta R. Costa-jussa, Joe Chuang, David Dale, Cynthia Gao, Jean Maillard, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Eduardo Sánchez, Yiannis Tsiamas, Arina Turkatenko, Albert Ventayol, Shireen Yates
February 07, 2025
February 07, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 07, 2025
Foundational models
Our approach
Latest news
Foundational models