RESEARCH

NLP

From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production

February 06, 2025

Abstract

Humans effortlessly communicate their thoughts through intricate sequences of motor actions. Yet, the neural processes that coordinate language production remain largely unknown, in part because speech artifacts limit the use of neuroimaging. To elucidate the unfolding of language production in the brain, we investigate with magnetoencephalography (MEG) and electroencephalography (EEG) the neurophysiological activity of 35 skilled typists, while they typed sentences on a keyboard. This approach confirms the hierarchical predictions of linguistic theories: the neural activity preceding the production of each word is marked by the sequential rise and fall of context-, word-, syllable-, and letter-level representations. Remarkably, each of these neural representations is maintained over long time periods within each level of the language hierarchy. This phenomenon results in a superposition of successive representations that is supported by a hierarchy of dynamic neural codes. Overall, these findings provide a precise computational breakdown of the neural dynamics that coordinate the production of language in the human brain.

Download the Paper

AUTHORS

Written by

Mingfang (Lucy) Zhang

Jarod Levy

Stéphane d'Ascoli

Jérémy Rapin

F.-Xavier Alario

Pierre Bourdillon

Svetlana Pinet

Jean Remi King

Publisher

NA

Related Publications

November 10, 2025

RESEARCH

SPEECH & AUDIO

Omnilingual ASR: Open-Source Multilingual Speech Recognition for 1600+ Languages

Omnilingual ASR team, Gil Keren, Artyom Kozhevnikov, Yen Meng, Christophe Ropers, Matthew Setzler, Skyler Wang, Ife Adebara, Michael Auli, Can Balioglu, Kevin Chan, Chierh Cheng, Joe Chuang, Caley Drooff, Mark Duppenthaler, Paul-Ambroise Duquenne, Alexander Erben, Cynthia Gao, Gabriel Mejia Gonzalez, Kehan Lyu, Sagar Miglani, Vineel Pratap, Kaushik Ram Sadagopan, Safiyyah Saleem, Arina Turkatenko, Albert Ventayol-Boada, Zheng-Xin Yong, Yu-An Chung, Jean Maillard, Rashel Moritz, Alexandre Mourachko, Mary Williamson, Shireen Yates

November 10, 2025

October 19, 2025

RESEARCH

NLP

Controlling Multimodal LLMs via Reward-guided Decoding

Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal

October 19, 2025

October 13, 2025

REINFORCEMENT LEARNING

RESEARCH

SPG: Sandwiched Policy Gradient for Masked Diffusion Language Models

Chenyu Wang, Paria Rashidinejad, DiJia Su, Song Jiang, Sid Wang, Siyan Zhao, Cai Zhou, Shannon Zejiang Shen, Feiyu Chen, Tommi Jaakkola, Yuandong Tian, Bo Liu

October 13, 2025

September 24, 2025

RESEARCH

NLP

CWM: An Open-Weights LLM for Research on Code Generation with World Models

Jade Copet, Quentin Carbonneaux, Gal Cohen, Jonas Gehring, Jacob Kahn, Jannik Kossen, Felix Kreuk, Emily McMilin, Michel Meyer, Yuxiang Wei, David Zhang, Kunhao Zheng, Jordi Armengol Estape, Pedram Bashiri, Maximilian Beck, Pierre Chambon, Abhishek Charnalia, Chris Cummins, Juliette Decugis, Zacharias Fisches, François Fleuret, Fabian Gloeckle, Alex Gu, Michael Hassid, Daniel Haziza, Badr Youbi Idrissi, Christian Keller, Rahul Kindi, Hugh Leather, Gallil Maimon, Aram Markosyan, Francisco Massa, Pierre-Emmanuel Mazaré, Vegard Mella, Naila Murray, Keyur Muzumdar, Peter O'Hearn, Matteo Pagliardini, Dmitrii Pedchenko, Tal Remez, Volker Seeker, Marco Selvi, Oren Sultan, Sida Wang, Luca Wehrstedt, Ori Yoran, Lingming Zhang, Taco Cohen, Yossi Adi, Gabriel Synnaeve

September 24, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.