Research

NLP

From Senones to Chenones: Tied Context-Dependent Graphemes for Hybrid Speech Recognition

December 14, 2019

Abstract

There is an implicit assumption that traditional hybrid approaches for automatic speech recognition (ASR) cannot directly model graphemes and need to rely on phonetic lexicons to get competitive performance, especially on English which has poor grapheme-phoneme correspondence. In this work, we show for the first time that, on English, hybrid ASR systems can in fact model graphemes effectively by leveraging tied context-dependent graphemes, i.e., chenones. Our chenone-based systems significantly outperform equivalent senone baselines by 4.5% to 11.1% relative on three different English datasets. Our results on Librispeech are state-of-the-art compared to other hybrid approaches and competitive with previously published end-to-end numbers. Further analysis shows that chenones can better utilize powerful acoustic models and large training data, and require context- and position-dependent modeling to work well. Chenone-based systems also outperform senone baselines on proper noun and rare word recognition, an area where the latter is traditionally thought to have an advantage. Our work provides an alternative for end-to-end ASR and establishes that hybrid systems can be improved by dropping the reliance on phonetic knowledge.

Download the Paper

Related Publications

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

October 31, 2022

NLP

Autoregressive Search Engines: Generating Substrings as Document Identifiers

Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel

October 31, 2022

December 06, 2020

NLP

Pre-training via Paraphrasing

Michael Lewis, Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer, Marjan Ghazvininejad, Sida Wang

December 06, 2020

November 30, 2020

NLP

Where Are You? Localization from Embodied Dialog

Dhruv Batra, Devi Parikh, Meera Hahn, Jacob Krantz, James Rehg, Peter Anderson, Stefan Lee

November 30, 2020

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

December 02, 2018

NLP

Computer Vision

One-Shot Unsupervised Cross Domain Translation | Facebook AI Research

Sagie Benaim, Lior Wolf

December 02, 2018

June 30, 2019

NLP

Variational Training for Large-Scale Noisy-OR Bayesian Networks | Facebook AI Research

Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth

June 30, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.