April 01, 2020
The evolution of clothing styles and their migration across the world is intriguing, yet difficult to describe quantitatively. We propose to discover and quantify fashion influences from everyday images of people wearing clothes. We introduce an approach that detects which cities influence which other cities in terms of propagating their styles. We then leverage the discovered influence patterns to inform a forecasting model that predicts the popularity of any given style at any given city into the future. Demonstrating our idea with GeoStyle—a large-scale dataset of 7.7M images covering 44 major world cities, we present the discovered influence relationships, revealing how cities exert and receive fashion influence for an array of 50 observed visual styles. Furthermore, the proposed forecasting model achieves state-of-the-art results for a challenging style forecasting task, showing the advantage of grounding visual style evolution both spatially and temporally.
September 05, 2024
Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma
September 05, 2024
August 20, 2024
Ashish Shenoy, Yichao Lu, Srihari Jayakumar, Debojeet Chatterjee, Mohsen Moslehpour, Pierce Chuang, Abhay Harpale, Vikas Bhardwaj, Di Xu (SWE), Shicong Zhao, Ankit Ramchandani, Luna Dong, Anuj Kumar
August 20, 2024
August 15, 2024
Kamalika Chaudhuri, Chuan Guo, Laurens van der Maaten, Saeed Mahloujifar, Mark Tygert
August 15, 2024
July 29, 2024
Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chay Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, Christoph Feichtenhofer
July 29, 2024
Foundational models
Latest news
Foundational models