RESEARCH

COMPUTER VISION

From Paris to Berlin: Discovering Fashion Style Influences Around the World

April 01, 2020

Abstract

The evolution of clothing styles and their migration across the world is intriguing, yet difficult to describe quantitatively. We propose to discover and quantify fashion influences from everyday images of people wearing clothes. We introduce an approach that detects which cities influence which other cities in terms of propagating their styles. We then leverage the discovered influence patterns to inform a forecasting model that predicts the popularity of any given style at any given city into the future. Demonstrating our idea with GeoStyle—a large-scale dataset of 7.7M images covering 44 major world cities, we present the discovered influence relationships, revealing how cities exert and receive fashion influence for an array of 50 observed visual styles. Furthermore, the proposed forecasting model achieves state-of-the-art results for a challenging style forecasting task, showing the advantage of grounding visual style evolution both spatially and temporally.

Download the Paper

AUTHORS

Written by

Kristen Grauman

Ziad Al-Halah

Publisher

CVPR

Research Topics

Computer Vision

Related Publications

December 12, 2024

COMPUTER VISION

EvalGIM: A Library for Evaluating Generative Image Models

Melissa Hall, Oscar Mañas, Reyhane Askari, Mark Ibrahim, Candace Ross, Pietro Astolfi, Tariq Berrada Ifriqi, Marton Havasi, Yohann Benchetrit, Karen Ullrich, Carolina Braga, Abhishek Charnalia, Maeve Ryan, Mike Rabbat, Michal Drozdzal, Jakob Verbeek, Adriana Romero Soriano

December 12, 2024

December 11, 2024

COMPUTER VISION

Video Seal: Open and Efficient Video Watermarking

Pierre Fernandez, Hady Elsahar, Zeki Yalniz, Alexandre Mourachko

December 11, 2024

December 11, 2024

NLP

COMPUTER VISION

Meta CLIP 1.2

Hu Xu, Bernie Huang, Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Scott Yih, Philippe Brunet, Kim Hazelwood, Ramya Raghavendra, Daniel Li (FAIR), Saining Xie, Christoph Feichtenhofer

December 11, 2024

December 11, 2024

COMPUTER VISION

Measuring Deja Vu Memorization Efficiently

Narine Kokhlikyan, Bargav Jayaraman, Florian Bordes, Chuan Guo, Kamalika Chaudhuri

December 11, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.