August 24, 2020
We consider the exploration-exploitation dilemma in finite-horizon reinforcement learning (RL). When the state space is large or continuous, traditional tabular approaches are unfeasible and some form of function approximation is mandatory. In this paper, we introduce an optimistically-initialized variant of the popular randomized least-squares value iteration (RLSVI), a model-free algorithm where exploration is induced by perturbing the least-squares approximation of the action-value function. Under the assumption that the Markov decision process has low-rank transition dynamics, we prove that the frequentist regret of RLSVI is upper-bounded by $\widetilde O(d^2 H^2 \sqrt{T})$ where $ d $ is the feature dimension, $ H $ is the horizon, and $ T $ is the total number of steps. To the best of our knowledge, this is the first frequentist regret analysis for randomized exploration with function approximation.
Written by
Matteo Pirotta
Alessandro Lazaric
Andrea Zanette
David Brandfonbrener
Emma Brunskill
Publisher
AISTATS
February 27, 2025
Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral
February 27, 2025
February 07, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 07, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
Foundational models
Our approach
Latest news
Foundational models