NLP

FLAME : Factuality-Aware Alignment for Large Language Models

December 17, 2024

Abstract

Alignment is a procedure to fine-tune pre-trained large language models (LLMs) to follow natural language instructions and serve as helpful AI assistants. We have observed, however, that the conventional alignment process fails to enhance the factual accuracy of LLMs, and often leads to the generation of more false facts (i.e., hallucination). In this paper, we study how to make the LLM alignment process more factual, by first identifying factors that lead to hallucination in both alignment steps: supervised fine-tuning (SFT) and reinforcement learning (RL). In particular, we find that training the LLM on new or unfamiliar knowledge can encourage hallucination. This makes SFT less factual as it trains on human-labeled data that may be novel to the LLM. Furthermore, reward functions used in standard RL often inadequately capture factuality and favor longer and more detailed responses, which inadvertently promote hallucination. Based on these observations, we propose FactuaLity-aware AlignMEnt, comprised of factuality-aware SFT and factuality-aware RL through direct preference optimization. Experiments show that our proposed FLAME guides LLMs to output more factual responses while maintaining their instruction-following capability.

Download the Paper

AUTHORS

Written by

Jack Lin

Luyu Gao

Barlas Oguz

Wenhan Xiong

Jimmy Lin

Scott Yih

Xilun Chen

Publisher

NeurIPS 2024

Related Publications

December 12, 2024

NLP

CORE MACHINE LEARNING

Memory Layers at Scale

Vincent-Pierre Berges, Barlas Oguz

December 12, 2024

December 12, 2024

NLP

Byte Latent Transformer: Patches Scale Better Than Tokens

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman, Srini Iyer

December 12, 2024

December 12, 2024

HUMAN & MACHINE INTELLIGENCE

NLP

Explore Theory-of-Mind: Program-Guided Adversarial Data Generation for Theory of Mind Reasoning

Melanie Sclar, Jane Yu, Maryam Fazel-Zarandi, Yulia Tsvetkov, Yonatan Bisk, Yejin Choi, Asli Celikyilmaz

December 12, 2024

December 11, 2024

NLP

Large Concept Models: Language Modeling in a Sentence Representation Space

The LCM team, Loic Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Belen Alastruey, Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R. Costa-jussa, David Dale, Hady Elsahar, Kevin Heffernan, João Maria Janeiro, Tuan Tran, Christophe Ropers, Eduardo Sánchez, Robin San Roman, Alexandre Mourachko, Safiyyah Saleem, Holger Schwenk

December 11, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.