RESEARCH

SPEECH & AUDIO

Feature Interaction Interpretability: A Case for Explaining Ad-Recommendation Systems via Neural Interaction Detection

February 21, 2020

Abstract

Recommendation is a prevalent application of machine learning that affects many users; therefore, it is important for recommender models to be accurate and interpretable. In this work, we propose a method to both interpret and augment the predictions of black-box recommender systems. In particular, we propose to interpret feature interactions from a source recommender model and explicitly encode these interactions in a target recommender model, where both source and target models are black-boxes. By not assuming the structure of the recommender system, our approach can be used in general settings. In our experiments, we focus on a prominent use of machine learning recommendation: ad-click prediction. We found that our interaction interpretations are both informative and predictive, e.g., significantly outperforming existing recommender models. What's more, the same approach to interpret interactions can provide new insights into domains even beyond recommendation, such as text and image classification.

Download the Paper

AUTHORS

Written by

Dehua Cheng

Hanning Zhou

Xue Feng

Hanpeng Liu

Michael Tsang

Yan Liu

Publisher

ICLR

Related Publications

May 24, 2024

SPEECH & AUDIO

NLP

DOC-RAG: ASR Language Model Personalization with Domain-Distributed Co-occurrence Retrieval Augmentation

Zhe Liu

May 24, 2024

April 14, 2024

SPEECH & AUDIO

NLP

CoLLD: Contrastive Layer-to-Layer Distillation for Compressing Multilingual Pre-Trained Speech Encoders

Heng-Jui Chang, Ning Dong (AI), Ruslan Mavlyutov, Sravya Popuri, Andy Chung

April 14, 2024

March 05, 2024

SPEECH & AUDIO

Generative Pre-training for Speech with Flow Matching

Alex Liu, Matt Le, Apoorv Vyas, Bowen Shi, Andros Tjandra, Wei-Ning Hsu

March 05, 2024

December 11, 2023

SPEECH & AUDIO

Audiobox: Unified Audio Generation with Natural Language Prompts

Wei-Ning Hsu, Akinniyi Akinyemi, Alice Rakotoarison, Andros Tjandra, Apoorv Vyas, Baishan Guo, Bapi Akula, Bowen Shi, Brian Ellis, Ivan Cruz, Jeff Wang, Jiemin Zhang, Mary Williamson, Matt Le, Rashel Moritz, Robbie Adkins, William Ngan, Xinyue Zhang, Yael Yungster, Yi-Chiao Wu

December 11, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.