February 21, 2020
Recommendation is a prevalent application of machine learning that affects many users; therefore, it is important for recommender models to be accurate and interpretable. In this work, we propose a method to both interpret and augment the predictions of black-box recommender systems. In particular, we propose to interpret feature interactions from a source recommender model and explicitly encode these interactions in a target recommender model, where both source and target models are black-boxes. By not assuming the structure of the recommender system, our approach can be used in general settings. In our experiments, we focus on a prominent use of machine learning recommendation: ad-click prediction. We found that our interaction interpretations are both informative and predictive, e.g., significantly outperforming existing recommender models. What's more, the same approach to interpret interactions can provide new insights into domains even beyond recommendation, such as text and image classification.
Publisher
ICLR
November 30, 2023
Xutai Ma, Anna Sun, Hirofumi Inaguma, Paden Tomasello, Siqi Ouyang
November 30, 2023
November 30, 2023
Seamless Communication, Loïc Barrault, Yu-An Chung, Mariano Coria Meglioli, David Dale, Ning Dong, Mark Duppenthaler, Paul-Ambroise Duquenne, Brian Ellis, Hady Elsahar, Justin Haaheim, John Hoffman, Min-Jae Hwang, Hirofumi Inaguma, Christopher Klaiber, Ilia Kulikov, Pengwei Li, Daniel Licht, Jean Maillard, Ruslan Mavlyutov, Alice Rakotoarison, Kaushik Ram Sadagopan, Abinesh Ramakrishnan, Tuan Tran, Guillaume Wenzek, Yilin Yang, Ethan Ye, Ivan Evtimov, Pierre Fernandez, Cynthia Gao, Prangthip Hansanti, Elahe Kalbassi, Amanda Kallet, Artyom Kozhevnikov, Gabriel Mejia Gonzalez, Robin San Roman, Christophe Touret, Corinne Wong, Carleigh Wood, Bokai Yu, Pierre Andrews, Can Balioglu, Peng-Jen Chen, Marta R. Costa-jussà, Maha Elbayad, Hongyu Gong, Francisco Guzmán, Kevin Heffernan, Somya Jain, Justine Kao, Ann Lee, Xutai Ma, Alexandre Mourachko, Benjamin Peloquin, Juan Pino, Sravya Popuri, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Anna Sun, Paden Tomasello, Changhan Wang, Jeff Wang, Skyler Wang, Mary Williamson
November 30, 2023
October 04, 2023
Alexandre Defossez, Charlotte Caucheteux, Jérémy Rapin, Ori Kabeli, Jean Remi King
October 04, 2023
August 22, 2023
Seamless Communication, Loic Barrault, Andy Chung, David Dale, Ning Dong (AI), Paul-Ambroise Duquenne, Hady Elsahar, Hongyu Gong, Kevin Heffernan, John Hoffman, Christopher Klaiber, Peng-Jen Chen, Daniel Licht, Jean Maillard, Alice Rakotoarison, Kaushik Ram Sadagopan, Guillaume Wenzek, Abinesh Ramakrishnan, Alexandre Mourachko, Amanda Kallet, Ann Lee, Anna Sun, Bapi Akula, Benjamin Peloquin, Bernie Huang, Bokai Yu, Brian Ellis, Can Balioglu, Carleigh Wood, Changhan Wang, Christophe Ropers, Cynthia Gao, Daniel Li (FAIR), Elahe Kalbassi, Ethan Ye, Gabriel Mejia Gonzalez, Hirofumi Inaguma, Holger Schwenk, Igor Tufanov, Ilia Kulikov, Janice Lam, Jeff Wang (PM - AI), Juan Pino, Justin Haaheim, Justine Kao, Prangthip Hasanti, Kevin Tran, Maha Elbayad, Marta R. Costa-jussa, Mohamed Ramadan, Naji El Hachem, Onur Çelebi, Paco Guzmán, Paden Tomasello, Pengwei Li, Pierre Andrews, Ruslan Mavlyutov, Russ Howes, Safiyyah Saleem, Skyler Wang, Somya Jain, Sravya Popuri, Tuan Tran, Vish Vogeti, Xutai Ma, Yilin Yang
August 22, 2023
Who We Are
Our Actions
Newsletter