June 15, 2019
Designing accurate and efficient ConvNets for mobile devices is challenging because the design space is combinatorially large. Due to this, previous neural architecture search (NAS) methods are computationally expensive. ConvNet architecture optimality depends on factors such as input resolution and target devices. However, existing approaches are too resource demanding for case-by-case redesigns. Also, previous work focuses primarily on reducing FLOPs, but FLOP count does not always reflect actual latency. To address these, we propose a differentiable neural architecture search (DNAS) framework that uses gradient-based methods to optimize ConvNet architectures, avoiding enumerating and training individual architectures separately as in previous methods. FBNets (Facebook-Berkeley-Nets), a family of models discovered by DNAS surpass state-of-the-art models both designed manually and generated automatically. FBNet-B achieves 74.1% top-1 accuracy on ImageNet with 295M FLOPs and 23.1 ms latency on a Samsung S8 phone, 2.4x smaller and 1.5x faster than MobileNetV2-1.3[17] with similar accuracy. Despite higher accuracy and lower latency than MnasNet[20], we estimate FBNet-B’s search cost is 420x smaller than MnasNet’s, at only 216 GPUhours. Searched for different resolutions and channel sizes, FBNets achieve 1.5% to 6.4% higher accuracy than MobileNetV2. The smallest FBNet achieves 50.2% accuracy and 2.9 ms latency (345 frames per second) on a Samsung S8. Over a Samsung-optimized FBNet, the iPhone-X-optimized model achieves a 1.4x speedup on an iPhone X. FBNet models are open-sourced at https://github.com/facebookresearch/mobile-vision.
October 18, 2025
Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal
October 18, 2025
September 23, 2025
Zilin Xiao, Qi Ma, Mengting Gu, Jason Chen, Xintao Chen, Vicente Ordonez, Vijai Mohan
September 23, 2025
August 14, 2025
Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose, Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darcet, Theo Moutakanni, Leonel Sentana, Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Herve Jegou, Patrick Labatut, Piotr Bojanowski
August 14, 2025
August 13, 2025
Josephine Raugel, Marc Szafraniec, Huy V. Vo, Camille Couprie, Patrick Labatut, Piotr Bojanowski, Valentin Wyart, Jean Remi King
August 13, 2025
June 11, 2019
Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, Larry Zitnick
June 11, 2019
April 30, 2018
Zhilin Yang, Saizheng Zhang, Jack Urbanek, Will Feng, Alexander H. Miller, Arthur Szlam, Douwe Kiela, Jason Weston
April 30, 2018
October 10, 2016
Matthijs Douze, Hervé Jégou, Florent Perronnin
October 10, 2016
June 18, 2018
Matthijs Douze, Arthur Szlam, Bharath Hariharan, Hervé Jégou
June 18, 2018

Our approach
Latest news
Foundational models