RESEARCH

NLP

Fast Approximate Natural Gradient Descent in a Kronecker-factored Eigenbasis

December 06, 2018

Abstract

Optimization algorithms that leverage gradient covariance information, such as variants of natural gradient descent (Amari, 1998), offer the prospect of yielding more effective descent directions. For models with many parameters, the covariance matrix they are based on becomes gigantic, making them inapplicable in their original form. This has motivated research into both simple diagonal approximations and more sophisticated factored approximations such as KFAC (Heskes, 2000; Martens & Grosse, 2015; Grosse & Martens, 2016). In the present work we draw inspiration from both to propose a novel approximation that is provably better than KFAC and amendable to cheap partial updates. It consists in tracking a diagonal variance, not in parameter coordinates, but in a Kronecker-factored eigenbasis, in which the diagonal approximation is likely to be more effective. Experiments show improvements over KFAC in optimization speed for several deep network architectures.

Download the Paper

AUTHORS

Written by

Pascal Vincent

Nicolas Ballas

César Laurent

Thomas George

Xavier Bouthillier

Publisher

NIPS

Related Publications

June 25, 2024

NLP

Neurons in Large Language Models: Dead, N-gram, Positional

Elena Voita, Javier Ferrando Monsonis, Christoforos Nalmpantis

June 25, 2024

June 25, 2024

SPEECH & AUDIO

NLP

Textless Acoustic Model with Self-Supervised Distillation for Noise-Robust Expressive Speech-to-Speech Translation

Min-Jae Hwang, Ilia Kulikov, Benjamin Peloquin, Hongyu Gong, Peng-Jen Chen, Ann Lee

June 25, 2024

June 14, 2024

NLP

How to Train Your DRAGON: Diverse Augmentation Towards Generalizable Dense Retrieval

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz, Jimmy Lin, Scott Yih, Xilun Chen

June 14, 2024

June 14, 2024

NLP

SYSTEMS RESEARCH

LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai, Nas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed Aly, Beidi Chen, Carole-Jean Wu

June 14, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.