FACET: Fairness in Computer Vision Evaluation Benchmark

August 31, 2023


Computer vision models have known performance disparities across attributes such as gender and skin tone. This means during tasks such as classification and detection, model performance differs for certain classes based on the demographics of the people in the image. These disparities have been shown to exist, but until now there has not been a unified approach to measure these differences for common use-cases of computer vision models. We present a new benchmark named FACET (FAirness in Computer Vision EvaluaTion), a large, publicly available evaluation set of 32k images for some of the most common vision tasks - image classification, object detection and segmentation. For every image in FACET, we hired expert reviewers to manually annotate person-related attributes such as perceived skin tone and hair type, manually draw bounding boxes and label fine-grained person-related classes such as disk jockey or guitarist. In addition, we use FACET to benchmark state-of-the art vision models and present a deeper understanding of potential performance disparities and challenges across sensitive demographic attributes. With the exhaustive annotations collected, we probe models using single demographics attributes as well as multiple at- tributes using an intersectional approach (e.g. hair color and perceived skin tone). Our results show that classification, detection, segmentation, and visual grounding models exhibit performance disparities across demographic attributes and intersections of attributes. These harms suggest that not all people represented in datasets receive fair and equitable treatment in these vision tasks. We hope current and future results using our benchmark will contribute to fairer, more robust vision models. FACET is available publicly at

Download the Paper


Written by

Laura Gustafson

Chloe Rolland

Nikhila Ravi

Quentin Duval

Aaron Adcock

Cheng-Yang Fu

Melissa Hall

Candace Ross



Research Topics

Computer Vision

Related Publications

September 27, 2023


Emu: Enhancing Image Generation Models Using Photogenic Needles in a Haystack

Xiaoliang Dai, Ji Hou, Kevin Chih-Yao Ma, Sam Tsai, Jialiang Wang, Rui Wang, Peizhao Zhang, Simon Vandenhende, Xiaofang Wang, Abhimanyu Dubey, Matthew Yu, Abhishek Kadian, Filip Radenovic, Dhruv Mahajan, Kunpeng Li, Yue (R) Zhao, Vladan Petrovic, Mitesh Kumar Singh, Simran Motwani, Yiwen Song, Yi Wen, Roshan Sumbaly, Vignesh Ramanathan, Zijian He, Peter Vajda, Devi Parikh

September 27, 2023

July 14, 2023



Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning

Lili Yu, Bowen Shi, Ram Pasunuru, Benjamin Miller, Olga Golovneva, Tianlu Wang, Arun Babu, Binh Tang, Brian Karrer, Shelly Sheynin, Candace Ross, Adam Polyak, Russ Howes, Vasu Sharma, Jacob Xu, Uriel Singer, Daniel Li (FAIR), Gargi Ghosh, Yaniv Taigman, Maryam Fazel-Zarandi, Asli Celikyilmaz, Luke Zettlemoyer, Armen Aghajanyan

July 14, 2023

June 20, 2023


Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild

Garrick Brazil, Abhinav Kumar, Julian Straub, Nikhila Ravi, Justin Johnson, Georgia Gkioxari

June 20, 2023

June 18, 2023



Galactic: Scaling End-to-End Reinforcement Learning for Rearrangement at 100k Steps-Per-Second

Vincent-Pierre Berges, Andrew Szot, Devendra Singh Chaplot, Aaron Gokaslan, Dhruv Batra, Eric Undersander

June 18, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.