December 4, 2014
We introduce two methods to collect additional training data for statistical machine translation systems from public social network content. The first method identifies multilingual content where the author self-translated their own post to reach additional friends, fans or customers. Once identified, we can split the post in the language segments and extract translation pairs from this content. The second methods considers web links (URLs) that users add as part of their post to point the reader to a video, article or website. If the same URL is shared from different language users, there is a chance they might give the same comment in their respective language. We use a support vector machine (SVM) as a classifier to identify true translations from all candidate pairs. We collected additional translation pairs using both methods for the language pairs Spanish-English and Portuguese-English. Testing the collected data as additional training data for statistical machine translations on in-domain test sets resulted in very significant improvements of up to 5 BLEU.
Research Topics
April 25, 2025
Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer
April 25, 2025
April 17, 2025
Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz
April 17, 2025
March 17, 2025
Zhaofeng Wu, Michihiro Yasunaga, Andrew Cohen, Yoon Kim, Asli Celikyilmaz, Marjan Ghazvininejad
March 17, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Our approach
Latest news
Foundational models