CONVERSATIONAL AI

RESEARCH

Extending Neural Generative Conversational Model using External Knowledge Sources

October 31, 2018

Abstract

The use of connectionist approaches in conversational agents has been progressing rapidly due to the availability of large corpora. However current generative dialogue models often lack coherence and are content poor. This work proposes an architecture to incorporate unstructured knowledge sources to enhance the next utterance prediction in chit-chat type of generative dialogue models. We focus on Sequence-to-Sequence (Seq2Seq) conversational agents trained with the Reddit News dataset, and consider incorporating external knowledge from Wikipedia summaries as well as from the NELL knowledge base. Our experiments show faster training time and improved perplexity when leveraging external knowledge.

Download the Paper

AUTHORS

Written by

Joelle Pineau

Prasanna Parthasarathi

Publisher

EMNLP

Related Publications

November 20, 2024

CONVERSATIONAL AI

COMPUTER VISION

Llama Guard 3 Vision: Safeguarding Human-AI Image Understanding Conversations

Jianfeng Chi, Ujjwal Karn, Hongyuan Zhan, Eric Smith, Javier Rando, Yiming Zhang, Kate Plawiak, Zacharie Delpierre Coudert, Kartikeya Upasani, Mahesh Pasupuleti

November 20, 2024

October 04, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Beyond Turn-Based Interfaces: Synchronous LLMs as Full-Duplex Dialogue Agents

Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota

October 04, 2024

September 30, 2024

CONVERSATIONAL AI

Ingest-And-Ground: Dispelling Hallucinations from Continually-Pretrained LLMs with RAG

Chenhao Fang, Derek Larson, Shitong Zhu, Sophie Zeng, Wendy Summer, Yanqing Peng, Yuriy Hulovatyy, Rajeev Rao, Gabriel Forgues, Arya Pudota, Alex Goncalves, Hervé Robert

September 30, 2024

September 05, 2024

CONVERSATIONAL AI

NLP

Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma

September 05, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.