Research

Computer Vision

Exploring Randomly Wired Neural Networks for Image Recognition

October 27, 2019

Abstract

Neural networks for image recognition have evolved through extensive manual design from simple chain-like models to structures with multiple wiring paths. The success of ResNets [12] and DenseNets [17] is due in large part to their innovative wiring plans. Now, neural architecture search (NAS) studies are exploring the joint optimization of wiring and operation types, however, the space of possible wirings is constrained and still driven by manual design despite being searched. In this paper, we explore a more diverse set of connectivity patterns through the lens of randomly wired neural networks. To do this, we first define the concept of a stochastic network generator that encapsulates the entire network generation process. Encapsulation provides a unified view of NAS and randomly wired networks. Then, we use three classical random graph models to generate randomly wired graphs for networks. The results are surprising: several variants of these random generators yield network instances that have competitive accuracy on the ImageNet benchmark. These results suggest that new efforts focusing on designing better network generators may lead to new breakthroughs by exploring less constrained search spaces with more room for novel design. The code is publicly available online.

Download the Paper

Related Publications

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

November 06, 2022

Computer Vision

Neural Basis Models for Interpretability

Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan

November 06, 2022

October 25, 2022

Theseus: A Library for Differentiable Nonlinear Optimization

Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi

October 25, 2022

October 22, 2022

Computer Vision

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang

October 22, 2022

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.