NLP

EpiK-Eval: Evaluation for Language Models as Epistemic Models

October 27, 2023

Abstract

In the era of artificial intelligence, the role of large language models (LLMs) is becoming increasingly pivotal. Despite their widespread use, their proficiency to consolidate knowledge from different training documents — a crucial ability for many applications — remains unexplored. This is the first study that investigates LLMs’ capability to combine this information effectively within their parameter space. As such, we introduce EpiK-Eval, a unique question-answering benchmark designed to assess LLMs’ skill in formulating a coherent and consistent knowledge representation from segmented narratives. Evaluations using multiple LLMs expose significant deficiencies in this area. We argue that these shortcomings stem from the intrinsic nature of current training objectives. Consequently, we advocate for refining the approach towards knowledge consolidation, as it harbors the potential to dramatically improve their overall effectiveness and performance. The findings from this study offer insights for developing more robust and reliable LLMs.

Download the Paper

AUTHORS

Written by

Gabriele Prato

Jerry Huang

Prasanna Parthasarathi

Shagun Sodhani

Sarath Chandar

Publisher

Arxiv

Related Publications

May 14, 2025

HUMAN & MACHINE INTELLIGENCE

SPEECH & AUDIO

Emergence of Language in the Developing Brain

Linnea Evanson, Christine Bulteau, Mathilde Chipaux, Georg Dorfmüller, Sarah Ferrand-Sorbets, Emmanuel Raffo, Sarah Rosenberg, Pierre Bourdillon, Jean Remi King

May 14, 2025

April 25, 2025

RESEARCH

NLP

ReasonIR: Training Retrievers for Reasoning Tasks

Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer

April 25, 2025

April 17, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

April 04, 2025

NLP

CORE MACHINE LEARNING

Multi-Token Attention

Olga Golovneva, Tianlu Wang, Jason Weston, Sainbayar Sukhbaatar

April 04, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.