RESEARCH

COMPUTER VISION

Environment Probing Interaction Policies

April 16, 2019

Abstract

A key challenge in reinforcement learning (RL) is environment generalization: a policy trained to solve a task in one environment often fails to solve the same task in a slightly different test environment. A common approach to improve inter-environment transfer is to learn policies that are invariant to the distribution of testing environments. However, we argue that instead of being invariant, the policy should identify the specific nuances of an environment and exploit them to achieve better performance. In this work, we propose the “Environment-Probing” Interaction (EPI) policy, a policy that probes a new environment to extract an implicit understanding of that environment’s behavior. Once this environment-specific information is obtained, it is used as an additional input to a task-specific policy that can now perform environment-conditioned actions to solve a task. To learn these EPI-policies, we present a reward function based on transition predictability. Specifically, a higher reward is given if the trajectory generated by the EPI-policy can be used to better predict transitions. We experimentally show that EPI-conditioned task-specific policies significantly outperform commonly used policy generalization methods on novel testing environments.

Download the Paper

AUTHORS

Written by

Abhinav Gupta

Lerrel Pinto

Wenxuan Zhou

Publisher

ICLR

Research Topics

Computer Vision

Related Publications

July 02, 2024

GRAPHICS

COMPUTER VISION

Meta 3D AssetGen: Text-to-Mesh Generation with High-Quality Geometry, Texture, and PBR Materials

Yawar Siddiqui, Tom Monnier, Filippos Kokkinos, Mahendra Kariya, Yanir Kleiman, Emilien Garreau, Oran Gafni, Natalia Neverova, Andrea Vedaldi, Roman Shapovalov, David Novotny

July 02, 2024

July 02, 2024

GRAPHICS

COMPUTER VISION

Meta 3D Gen

Raphael Bensadoun, Tom Monnier, Yanir Kleiman, Filippos Kokkinos, Yawar Siddiqui, Mahendra Kariya, Omri Harosh, Roman Shapovalov, Emilien Garreau, Animesh Karnewar, Ang Cao, Idan Azuri, Iurii Makarov, Eric-Tuan Le, Antoine Toisoul, David Novotny, Oran Gafni, Natalia Neverova, Andrea Vedaldi

July 02, 2024

July 02, 2024

GRAPHICS

COMPUTER VISION

Meta 3D TextureGen: Fast and Consistent Texture Generation for 3D Objects

Raphael Bensadoun, Yanir Kleiman, Idan Azuri, Omri Harosh, Andrea Vedaldi, Natalia Neverova, Oran Gafni

July 02, 2024

June 20, 2024

COMPUTER VISION

ICON: Incremental CONfidence for Joint Pose and Radiance Field Optimization

Weiyao Wang, Pierre Gleize, Hao Tang, Xingyu Chen, Kevin Liang, Matt Feiszli

June 20, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.