April 9, 2020
The paper proposes an efficient, robust, and reconfigurable technique to suppress various types of noises for any sampling rate. The theoretical analyses, subjective and objective test results show that the proposed noise suppression (NS) solution significantly enhances the speech transmission index (STI), speech intelligibility (SI), signal-to-noise ratio (SNR), and subjective listening experience. The STI and SI consists of 5 levels, i.e., bad, poor, fair, good, and excellent. The most common noisy condition is of SNR ranging from -5 to 8 dB. For the input SNR between -5 and 2.5 dB, the proposed NS improves the STI and SI from “fair” to “good”. For the input SNR between 2.5 to 8 dB, the STI and SI are improved from “good” to “excellent” by the proposed NS. The proposed NS can be adopted in both capture and playback paths for voice over internet protocol, voice-trigger, and automatic speech recognition applications.
Written by
Jun Yang
Joshua Bingham
Publisher
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
Research Areas
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
October 31, 2022
Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel
October 31, 2022
December 06, 2020
Michael Lewis, Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer, Marjan Ghazvininejad, Sida Wang
December 06, 2020
November 30, 2020
Dhruv Batra, Devi Parikh, Meera Hahn, Jacob Krantz, James Rehg, Peter Anderson, Stefan Lee
November 30, 2020
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Foundational models
Latest news
Foundational models