December 19, 2014
Sentiment analysis is a common task in natural language processing that aims to detect polarity of a text document (typically a consumer review). In the simplest settings, we discriminate only between positive and negative sentiment, turning the task into a standard binary classification problem. We compare several machine learning approaches to this problem, and combine them to achieve a new state of the art. We show how to use for this task the standard generative language models, which are slightly complementary to the state of the art techniques. We achieve strong results on a well-known dataset of IMDB movie reviews. Our results are easily reproducible, as we publish also the code needed to repeat the experiments. This should simplify further advance of the state of the art, as other researchers can combine their techniques with ours with little effort.
Publisher
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
October 31, 2022
Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel
October 31, 2022
December 06, 2020
Michael Lewis, Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer, Marjan Ghazvininejad, Sida Wang
December 06, 2020
November 30, 2020
Dhruv Batra, Devi Parikh, Meera Hahn, Jacob Krantz, James Rehg, Peter Anderson, Stefan Lee
November 30, 2020
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Foundational models
Latest news
Foundational models