June 26, 2016
Over the last few years deep learning methods have emerged as one of the most prominent approaches for video analysis. However, so far their most successful applications have been in the area of video classification and detection, i.e., problems involving the prediction of a single class label or a handful of output variables per video. Furthermore, while deep networks are commonly recognized as the best models to use in these domains, there is a widespread perception that in order to yield successful results they often require time-consuming architecture search, manual tweaking of parameters and computationally intensive preprocessing or post-processing methods.
In this paper we challenge these views by presenting a deep 3D convolutional architecture trained end to end to perform voxel-level prediction, i.e., to output a variable at every voxel of the video. Most importantly, we show that the same exact architecture can be used to achieve competitive results on three widely different voxel-prediction tasks: video semantic segmentation, optical flow estimation, and video coloring. The three networks learned on these problems are trained from raw video without any form of preprocessing and their outputs do not require post-processing to achieve outstanding performance. Thus, they offer an efficient alternative to traditional and much more computationally expensive methods in these video domains.
November 27, 2022
Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio
November 27, 2022
November 27, 2022
Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann
November 27, 2022
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
April 08, 2021
Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer
April 08, 2021
April 30, 2018
Tomer Galanti, Lior Wolf, Sagie Benaim
April 30, 2018
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
Foundational models
Latest news
Foundational models