September 27, 2023
Training text-to-image models with web scale image-text pairs enables the generation of a wide range of visual concepts from text. However, these pre-trained models often face challenges when it comes to generating highly aesthetic images. This creates the need for aesthetic alignment post pre-training. In this paper, we propose quality-tuning to effectively guide a pre-trained model to exclusively generate highly visually appealing images, while maintaining generality across visual concepts. Our key insight is that supervised fine-tuning with a set of surprisingly small but extremely visually appealing images can significantly improve the generation quality. We pre-train a latent diffusion model on 1.1 billion image-text pairs and fine-tune it with only a few thousand carefully selected high-quality images. The resulting model, Emu, achieves a win rate of 82.9% compared with its pre-trained only counterpart. Compared to the state-of-the-art SDXLv1.0, Emu is preferred 68.4% and 71.3% of the time on visual appeal on the standard PartiPrompts and our Open User Input benchmark based on the real-world usage of text-to-image models. In addition, we show that quality-tuning is a generic approach that is also effective for other architectures, including pixel diffusion and masked generative transformer models.
Written by
Xiaoliang Dai
Ji Hou
Kevin Chih-Yao Ma
Sam Tsai
Jialiang Wang
Peizhao Zhang
Simon Vandenhende
Xiaofang Wang
Matthew Yu
Abhishek Kadian
Kunpeng Li
Yue (R) Zhao
Vladan Petrovic
Simran Motwani
Yiwen Song
Yi Wen
Zijian He
Peter Vajda
Publisher
Meta
Research Topics
September 30, 2023
Pierre Fernandez, Guillaume Couairon, Hervé Jegou, Matthijs Douze, Teddy Furon
September 30, 2023
September 29, 2023
Yiming Li, Qi Fang, Jiamu Bai, Siheng Chen, Felix Xu, Chen Feng
September 29, 2023
September 22, 2023
Shuangzhi Li, Zhijie Wang, Felix Xu, Qing Guo, Xingyu Li, Lei Ma
September 22, 2023
August 31, 2023
Laura Gustafson, Chloe Rolland, Nikhila Ravi, Quentin Duval, Aaron Adcock, Cheng-Yang Fu, Melissa Hall, Candace Ross
August 31, 2023
Who We Are
Our Actions
Newsletter