NLP

ML APPLICATIONS

Emerging Cross-lingual Structure in Pretrained Language Models

July 09, 2020

Abstract

We study the problem of multilingual masked language modeling, i.e. the training of a single model on concatenated text from multiple languages, and present a detailed study of several factors that influence why these models are so effective for cross-lingual transfer. We show, contrary to what was previously hypothesized, that transfer is possible even when there is no shared vocabulary across the monolingual corpora and also when the text comes from very different domains. The only requirement is that there are some shared parameters in the top layers of the multi-lingual encoder. To better understand this result, we also show that representations from independently trained models in different languages can be aligned post-hoc quite effectively, strongly suggesting that, much like for non-contextual word embeddings, there are universal latent symmetries in the learned embedding spaces. For multilingual masked language modeling, these symmetries seem to be automatically discovered and aligned during the joint training process.

Download the Paper

AUTHORS

Written by

Shijie Wu

Haoran Li

Luke Zettlemoyer

Shijie Wu

Ves Stoyanov

Publisher

ACL

Related Publications

April 17, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

April 04, 2025

NLP

CORE MACHINE LEARNING

Multi-Token Attention

Olga Golovneva, Tianlu Wang, Jason Weston, Sainbayar Sukhbaatar

April 04, 2025

March 17, 2025

RESEARCH

NLP

reWordBench: Benchmarking and Improving the Robustness of Reward Models with Transformed Inputs

Zhaofeng Wu, Michihiro Yasunaga, Andrew Cohen, Yoon Kim, Asli Celikyilmaz, Marjan Ghazvininejad

March 17, 2025

March 13, 2025

NLP

COMPUTER VISION

Subobject-level Image Tokenization

Delong Chen, Samuel Cahyawijaya, Jianfeng Liu, Baoyuan Wang, Pascale Fung

March 13, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.