ROBOTICS

EMERGENCE OF MAPS IN THE MEMORIES OF BLIND NAVIGATION AGENTS

February 01, 2023

Abstract

Animal navigation research posits that organisms build and maintain internal spatial representations, or maps, of their environment. We ask if machines – specifically, artificial intelligence (AI) navigation agents – also build implicit (or ‘mental’) maps. A positive answer to this question would (a) explain the surprising phenomenon in recent literature of ostensibly map-free neural-networks achieving strong performance, and (b) strengthen the evidence of mapping as a fundamental mechanism for navigation by intelligent embodied agents, whether they be biological or artificial. Unlike animal navigation, we can judiciously design the agent’s perceptual system and control the learning paradigm to nullify alternative navigation mechanisms. Specifically, we train ‘blind’ agents – with sensing limited to only egomotion and no other sensing of any kind – to perform PointGoal navigation (‘go to ∆x, ∆y’) via reinforcement learning. Our agents are composed of navigation-agnostic components (fully-connected and recurrent neural networks), and our experimental setup provides no inductive bias towards mapping. Despite these harsh conditions, we find that blind agents are (1) surprisingly effective navigators in new environments (∼95% success); (2) they utilize memory over long horizons (remembering ∼1,000 steps of past experience in an episode); (3) this memory enables them to exhibit intelligent behavior (following walls, detecting collisions, taking shortcuts); (4) there is emergence of maps and collision detection neurons in the representations of the environment built by a blind agent as it navigates; and (5) the emergent maps are selective and task dependent (e.g. the agent ‘forgets’ exploratory detours). Overall, this paper presents no new techniques for the AI audience, but a surprising finding, an insight, and an explanation.

Download the Paper

AUTHORS

Written by

Dhruv Batra

Ari Morcos

Manolis Savva

Erik Wijmans

Irfan Essa

Stefan Lee

Publisher

ICLR

Research Topics

Robotics

Related Publications

October 31, 2024

HUMAN & MACHINE INTELLIGENCE

ROBOTICS

Digitizing Touch with an Artificial Multimodal Fingertip

Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra

October 31, 2024

October 31, 2024

ROBOTICS

PARTNR: A Benchmark for Planning and Reasoning in Embodied Multi-agent Tasks

Matthew Chang, Gunjan Chhablani, Alexander William Clegg, Mikael Dallaire Cote, Ruta Desai, Michal Hlavac, Vladimir Karashchuk, Jacob Krantz, Roozbeh Mottaghi, Priyam Parashar, Siddharth Patki, Ishita Prasad, Xavi Puig, Akshara Rai, Ram Ramrakhya, Daniel Tran, Joanne Truong, John Turner, Eric Undersander, Jimmy Yang

October 31, 2024

October 31, 2024

ROBOTICS

Sparsh: Self-supervised touch representations for vision-based tactile sensing

Carolina Higuera, Akash Sharma, Krishna Bodduluri, Taosha Fan, Patrick Lancaster, Mrinal Kalakrishnan, Michael Kaess, Byron Boots, Mike Lambeta, Tingfan Wu, Mustafa Mukadam

October 31, 2024

May 06, 2024

ROBOTICS

Bootstrapping Linear Models for Fast Online Adaptation in Human-Agent Collaboration

Ben Newman, Christopher Paxton, Kris Kitani, Henny Admoni

May 06, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.