NLP

Efficiently Upgrading Multilingual Machine Translation Models to Support More Languages

June 10, 2023

Abstract

With multilingual machine translation (MMT) models continuing to grow in size and number of supported languages, it is natural to reuse and upgrade existing models to save computation as data becomes available in more languages. However, adding new languages requires updating the vocabulary, which complicates the reuse of embeddings. The question of how to reuse existing models while also making architectural changes to provide capacity for both old and new languages has also not been closely studied. In this work, we introduce three techniques that help speed up effective learning of the new languages and alleviate catastrophic forgetting despite vocabulary and architecture mismatches. Our results show that by (1) carefully initializing the network, (2) applying learning rate scaling, and (3) performing data up-sampling, it is possible to exceed the performance of a same-sized baseline model with 30% computation and recover the performance of a larger model trained from scratch with over 50% reduction in computation. Furthermore, our analysis reveals that the introduced techniques help learn the new directions more effectively and alleviate catastrophic forgetting at the same time. We hope our work will guide research into more efficient approaches to growing languages for these MMT models and ultimately maximize the reuse of existing models.

Download the Paper

AUTHORS

Written by

Simeng Sun

Maha Elbayad

Anna Sun

James Cross

Publisher

EACL

Related Publications

April 14, 2024

SPEECH & AUDIO

NLP

CoLLD: Contrastive Layer-to-Layer Distillation for Compressing Multilingual Pre-Trained Speech Encoders

Heng-Jui Chang, Ning Dong (AI), Ruslan Mavlyutov, Sravya Popuri, Andy Chung

April 14, 2024

February 21, 2024

INTEGRITY

NLP

Watermarking Makes Language Models Radioactive

Tom Sander, Pierre Fernandez, Alain Durmus, Matthijs Douze, Teddy Furon

February 21, 2024

December 07, 2023

CONVERSATIONAL AI

NLP

Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Davide Testuggine, Madian Khabsa

December 07, 2023

December 06, 2023

NLP

Polar Ducks and Where to Find Them: Enhancing Entity Linking with Duck Typing and Polar Box Embeddings

Mattia Atzeni, Mike Plekhanov, Frederic Dreyer, Nora Kassner, Simone Merello, Louis Martin, Nicola Cancedda

December 06, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.