Research

Efficient Evaluation of Coding Strategies for Transcutaneous Language Communication

June 13, 2018

Abstract

Communication of natural language via the skin has seen renewed interest with the advent of mobile devices and wearable technology. Efficient evaluation of candidate haptic encoding algorithms remains a significant challenge. We present 4 algorithms along with our methods for evaluation, which are based on discriminability, learnability, and generalizability. Advantageously, mastery of an extensive vocabulary is not required. Haptic displays used 16 or 32 vibrotactile actuators arranged linearly or as a grid on the arm. In Study 1, a two-alternative, forced-choice protocol tested the ability of 10 participants to detect differences in word pairs encoded by 3 acoustic algorithms: Frequency Decomposition (FD), Dominant Spectral Peaks (DSP), and Autoencoder (AE). Detection specificity was not different among the algorithms, but sensitivity was significantly worse with AE than with FD or DSP. Study 2 compared the performance of 16 participants randomized to DSP vs a phoneme-based algorithm (PH) using a custom video game for training and testing. The PH group performed significantly better at all test stages, and showed better recognition and retention of words along with evidence of generalizability to new words.

Download the Paper

Related Publications

February 27, 2025

Integrity

Theory

Logic.py: Bridging the Gap between LLMs and Constraint Solvers

Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral

February 27, 2025

February 06, 2025

Speech & Audio

Meta Audiobox Aesthetics: Unified Automatic Quality Assessment for Speech, Music, and Sound

Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu

February 06, 2025

February 06, 2025

NLP

Brain-to-Text Decoding: A Non-invasive Approach via Typing

Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King

February 06, 2025

February 06, 2025

NLP

From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production

Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King

February 06, 2025

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.