RESEARCH

NLP

Efficient, arbitrarily high precision hardware logarithmic arithmetic for linear algebra

May 15, 2020

Abstract

The logarithmic number system (LNS) is arguably not broadly used due to exponential circuit overheads for summation tables relative to arithmetic precision. Methods to reduce this overhead have been proposed, yet still yield designs with high chip area and power requirements. Use remains limited to lower precision or high multiply/add ratio cases, while much of linear algebra (near 1:1 multiply/add ratio) does not qualify. We present a dual-base approximate logarithmic arithmetic comparable to floating point in use, yet unlike LNS it is easily fully pipelined, extendable to arbitrary precision with O(n^2) overhead, and energy efficient at a 1:1 multiply/add ratio. Compared to float32 or float64 vector inner product with FMA, our design is respectively 2.3× and 4.6× more energy efficient in 7 nm CMOS. It depends on exp and log evaluation 5.4× and 3.2× more energy efficient, at 0.23× and 0.37× the chip area for equivalent accuracy versus standard hyperbolic CORDIC using shift-and-add and approximated ODE integration in the style of Revol and Yakoubsohn. This technique is a novel alternative for low power, high precision hardened linear algebra in computer vision, graphics and machine learning applications.

Download the Paper

AUTHORS

Written by

Jeff Johnson

Publisher

IEEE Symposium on Computer Arithmetic

Related Publications

December 17, 2024

NLP

FLAME : Factuality-Aware Alignment for Large Language Models

Jack Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Scott Yih, Xilun Chen

December 17, 2024

December 12, 2024

NLP

CORE MACHINE LEARNING

Memory Layers at Scale

Vincent-Pierre Berges, Barlas Oguz

December 12, 2024

December 12, 2024

NLP

Byte Latent Transformer: Patches Scale Better Than Tokens

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman, Srini Iyer

December 12, 2024

December 12, 2024

HUMAN & MACHINE INTELLIGENCE

NLP

Explore Theory-of-Mind: Program-Guided Adversarial Data Generation for Theory of Mind Reasoning

Melanie Sclar, Jane Yu, Maryam Fazel-Zarandi, Yulia Tsvetkov, Yonatan Bisk, Yejin Choi, Asli Celikyilmaz

December 12, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.