NLP

Effective Long-Context Scaling of Foundation Models

September 27, 2023

Abstract

We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens. Our model series are built through continual pretraining from LLAMA 2 with longer training sequences and on a dataset where long texts are upsampled. We perform extensive evaluation on language modeling, synthetic context probing tasks, and a wide range of research benchmarks. On research benchmarks, our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over LLAMA 2. Notably, with a cost-effective instruction tuning procedure that does not require human-annotated long instruction data, the 70B variant can already surpass gpt-3.5-turbo-16k’s overall performance on a suite of long-context tasks. Alongside these results, we provide an in-depth analysis on the individual components of our method. We delve into LLAMA’s position encodings and discuss its limitation in modeling long dependencies. We also examine the impact of various design choices in the pretraining process, including the data mix and the training curriculum of sequence lengths – our ablation experiments suggest that having abundant long texts in the pretrain dataset is not the key to achieving strong performance, and we empirically verify that long context continual pretraining is more efficient and similarly effective compared to pretraining from scratch with long sequences.

Download the Paper

AUTHORS

Written by

Wenhan Xiong

Igor Molybog

Hejia Zhang

Praj Bhargava

Rui Hou

Louis Martin

Rashi Rungta

Karthik Abinav Sankararaman

Barlas Oguz

Madian Khabsa

Han Fang

Yashar Mehdad

Sharan Narang

Kshitiz Malik

Angela Fan

Shruti Bhosale

Sergey Edunov

Mike Lewis

Sinong Wang

Hao Ma

Jingyu Liu

Publisher

Meta

Related Publications

December 17, 2024

NLP

FLAME : Factuality-Aware Alignment for Large Language Models

Jack Lin, Luyu Gao, Barlas Oguz, Wenhan Xiong, Jimmy Lin, Scott Yih, Xilun Chen

December 17, 2024

December 12, 2024

NLP

CORE MACHINE LEARNING

Memory Layers at Scale

Vincent-Pierre Berges, Barlas Oguz

December 12, 2024

December 12, 2024

NLP

Byte Latent Transformer: Patches Scale Better Than Tokens

Artidoro Pagnoni, Ram Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret Li, Chunting Zhou, Lili Yu, Jason Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis, Ari Holtzman, Srini Iyer

December 12, 2024

December 12, 2024

HUMAN & MACHINE INTELLIGENCE

NLP

Explore Theory-of-Mind: Program-Guided Adversarial Data Generation for Theory of Mind Reasoning

Melanie Sclar, Jane Yu, Maryam Fazel-Zarandi, Yulia Tsvetkov, Yonatan Bisk, Yejin Choi, Asli Celikyilmaz

December 12, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.