November 10, 2019
We introduce EASSE, a Python package aiming to facilitate and standardize automatic evaluation and comparison of Sentence Simplification (SS) systems. EASSE provides a single access point to a broad range of evaluation resources: standard automatic metrics for assessing SS outputs (e.g. SARI), word-level accuracy scores for certain simplification transformations, reference-independent quality estimation features (e.g. compression ratio), and standard test data for SS evaluation (e.g. TurkCorpus). Finally, EASSE generates easy-to-visualize reports on the various metrics and features above and on how a particular SS output fares against reference simplifications. Through experiments, we show that these functionalities allow for better comparison and under
Research Topics
November 16, 2022
Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer
November 16, 2022
October 31, 2022
Fabio Petroni, Giuseppe Ottaviano, Michele Bevilacqua, Patrick Lewis, Scott Yih, Sebastian Riedel
October 31, 2022
December 06, 2020
Michael Lewis, Armen Aghajanyan, Gargi Ghosh, Luke Zettlemoyer, Marjan Ghazvininejad, Sida Wang
December 06, 2020
November 30, 2020
Dhruv Batra, Devi Parikh, Meera Hahn, Jacob Krantz, James Rehg, Peter Anderson, Stefan Lee
November 30, 2020
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
December 02, 2018
Sagie Benaim, Lior Wolf
December 02, 2018
June 30, 2019
Geng Ji, Dehua Cheng, Huazhong Ning, Changhe Yuan, Hanning Zhou, Liang Xiong, Erik B. Sudderth
June 30, 2019
Foundational models
Latest news
Foundational models