October 05, 2022
We consider the targeted image editing problem: blending a region in a source image with a driver image that specifies the desired change. Differently from prior works, we solve this problem by learning a conditional probability distribution of the edits, end-to-end. Training such a model requires addressing a fundamental technical challenge: the lack of example edits for training. To this end, we propose a self-supervised approach that simulates edits by augmenting off-the-shelf images in a target domain. The benefits are remarkable: implemented as a state-of-the-art auto-regressive transformer, our approach is simple, sidesteps difficulties with previous methods based on GAN-like priors, obtains significantly better edits, and is efficient. Furthermore, we show that different blending effects can be learned by an intuitive control of the augmentation process, with no other changes required to the model architecture. We demonstrate the superiority of this approach across several datasets in extensive quantitative and qualitative experiments, including human studies, significantly outperforming prior work.
Written by
Cheng-Yang Fu
Andrea Vedaldi
Andrew Brown
Omkar Parkhi
Tamara Berg
Publisher
ECCV
Research Topics
November 20, 2024
Jianfeng Chi, Ujjwal Karn, Hongyuan Zhan, Eric Smith, Javier Rando, Yiming Zhang, Kate Plawiak, Zacharie Delpierre Coudert, Kartikeya Upasani, Mahesh Pasupuleti
November 20, 2024
November 11, 2024
Sherry Xue, Romy Luo, Changan Chen, Kristen Grauman
November 11, 2024
October 31, 2024
Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra
October 31, 2024
October 16, 2024
Movie Gen Team
October 16, 2024
Foundational models
Latest news
Foundational models