CONVERSATIONAL AI

NLP

DVD: A Diagnostic Dataset for Multi-step Reasoning in Video Grounded Dialogue

June 02, 2021

Abstract

A video-grounded dialogue system is required to understand both dialogue, which contains semantic dependencies from turn to turn, and video, which contains visual cues of spatial and temporal scene variations. Building such dialogue systems is a challenging problem, involving various reasoning types on both visual and language inputs. Existing benchmarks do not have enough annotations to thoroughly analyze dialogue systems and understand their capabilities and limitations in isolation. These benchmarks are also not explicitly designed to minimize biases that models can exploit without actual reasoning. To address these limitations, in this paper, we present DVD, a Diagnostic Dataset for Video grounded Dialogues. The dataset is designed to contain minimal biases and has detailed annotations for the different types of reasoning over the spatio-temporal space of video. Dialogues are synthesized over multiple question turns, each of which is injected with a set of cross-turn semantic relationships. We use DVD to analyze existing approaches, providing interesting insights into their abilities and limitations. In total, DVD is built from 11k CATER synthetic videos and contains 10 instances of 10-round dialogues for each video, resulting in more than 100k dialogues and 1M question-answer pairs. Our code and dataset are publicly available.

Download the Paper

Related Publications

December 07, 2023

CONVERSATIONAL AI

NLP

Llama Guard: LLM-based Input-Output Safeguard for Human-AI Conversations

Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Davide Testuggine, Madian Khabsa

December 07, 2023

December 06, 2023

NLP

Polar Ducks and Where to Find Them: Enhancing Entity Linking with Duck Typing and Polar Box Embeddings

Mattia Atzeni, Mike Plekhanov, Frederic Dreyer, Nora Kassner, Simone Merello, Louis Martin, Nicola Cancedda

December 06, 2023

December 04, 2023

NLP

PATHFINDER: Guided Search over Multi-Step Reasoning Paths

Olga Golovneva, Sean O'Brien, Ram Pasunuru, Tianlu Wang, Luke Zettlemoyer, Maryam Fazel-Zarandi, Asli Celikyilmaz

December 04, 2023

November 30, 2023

SPEECH & AUDIO

NLP

Efficient Monotonic Multihead Attention

Xutai Ma, Anna Sun, Hirofumi Inaguma, Paden Tomasello, Siqi Ouyang

November 30, 2023

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.