COMPUTER VISION

CORE MACHINE LEARNING

Dropout Reduces Underfitting

May 31, 2023

Abstract

Introduced by Hinton et al. in 2012, dropout has stood the test of time as a regularizer for preventing overfitting in neural networks. In this study, we demonstrate that dropout can also mitigate underfitting when used at the start of training. During the early phase, we find dropout reduces the directional variance of gradients across mini-batches and helps align the mini-batch gradients with the entire dataset's gradient. This helps counteract the stochasticity of SGD and limit the influence of individual batches on model training. Our findings lead us to a solution for improving performance in underfitting models - early dropout: dropout is applied only during the initial phases of training, and turned off afterwards. Models equipped with early dropout achieve lower final training loss compared to their counterparts without dropout. Additionally, we explore a symmetric technique for regularizing overfitting models - late dropout, where dropout is not used in the early iterations and is only activated later in training. Experiments on ImageNet and various vision tasks demonstrate that our methods consistently improve generalization accuracy. Our results encourage more research on understanding regularization in deep learning and our methods can be useful tools for future neural network training, especially in the era of large data. Code is available at https://github.com/facebookresearch/dropout.

Download the Paper

AUTHORS

Written by

Zhuang Liu

Zhiqiu Xu

Joseph Jin

Zhiqiang Shen

Trevor Darrell

Publisher

ICML

Research Topics

Computer Vision

Core Machine Learning

Related Publications

March 20, 2024

COMPUTER VISION

SceneScript: Reconstructing Scenes With An Autoregressive Structured Language Model

Armen Avetisyan, Chris Xie, Henry Howard-Jenkins, Tsun-Yi Yang, Samir Aroudj, Suvam Patra, Fuyang Zhang, Duncan Frost, Luke Holland, Campbell Orme, Jakob Julian Engel, Edward Miller, Richard Newcombe, Vasileios Balntas

March 20, 2024

February 15, 2024

RANKING AND RECOMMENDATIONS

CORE MACHINE LEARNING

TASER: Temporal Adaptive Sampling for Fast and Accurate Dynamic Graph Representation Learning

Danny Deng, Hongkuan Zhou, Hanqing Zeng, Yinglong Xia, Chris Leung (AI), Jianbo Li, Rajgopal Kannan, Viktor Prasanna

February 15, 2024

February 15, 2024

CORE MACHINE LEARNING

Revisiting Feature Prediction for Learning Visual Representations from Video

Adrien Bardes, Quentin Garrido, Xinlei Chen, Michael Rabbat, Yann LeCun, Mido Assran, Nicolas Ballas, Jean Ponce

February 15, 2024

February 13, 2024

GRAPHICS

COMPUTER VISION

IM-3D: Iterative Multiview Diffusion and Reconstruction for High-Quality 3D Generation

Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran Gafni, Filippos Kokkinos

February 13, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.