June 18, 2020
Large detection datasets have a long tail of lowshot classes with very few bounding box annotations. We wish to improve detection for lowshot classes with weakly labelled web-scale datasets only having image-level labels. This requires a detection framework that can be jointly trained with limited number of bounding box annotated images and large number of weakly labelled images. Towards this end, we propose a modification to the FRCNN model to automatically infer label assignment for objects proposals from weakly labelled images during training. We pose this label assignment as a Linear Program with constraints on the number and overlap of object instances in an image. We show that this can be solved efficiently during training for weakly labelled images. Compared to just training with few annotated examples, augmenting with weakly labelled examples in our framework provides significant gains. We demonstrate this on the LVIS dataset (3.5% gain in AP) as well as different lowshot variants of the COCO dataset. We provide a thorough analysis of the effect of amount of weakly labelled and fully labelled data required to train the detection model. Our DLWL framework can also outperform self-supervised baselines like omni-supervision for lowshot classes.
February 27, 2025
Pascal Kesseli, Peter O'Hearn, Ricardo Silveira Cabral
February 27, 2025
February 07, 2025
Andros Tjandra, Yi-Chiao Wu, Baishan Guo, John Hoffman, Brian Ellis, Apoorv Vyas, Bowen Shi, Sanyuan Chen, Matt Le, Nick Zacharov, Carleigh Wood, Ann Lee, Wei-Ning Hsu
February 07, 2025
February 06, 2025
Jarod Levy, Mingfang (Lucy) Zhang, Svetlana Pinet, Jérémy Rapin, Hubert Jacob Banville, Stéphane d'Ascoli, Jean Remi King
February 06, 2025
February 06, 2025
Mingfang (Lucy) Zhang, Jarod Levy, Stéphane d'Ascoli, Jérémy Rapin, F.-Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean Remi King
February 06, 2025
Foundational models
Our approach
Latest news
Foundational models