RESEARCH

COMPUTER VISION

DLWL: Improving Detection for Lowshot classes with Weakly Labelled data

June 18, 2020

Abstract

Large detection datasets have a long tail of lowshot classes with very few bounding box annotations. We wish to improve detection for lowshot classes with weakly labelled web-scale datasets only having image-level labels. This requires a detection framework that can be jointly trained with limited number of bounding box annotated images and large number of weakly labelled images. Towards this end, we propose a modification to the FRCNN model to automatically infer label assignment for objects proposals from weakly labelled images during training. We pose this label assignment as a Linear Program with constraints on the number and overlap of object instances in an image. We show that this can be solved efficiently during training for weakly labelled images. Compared to just training with few annotated examples, augmenting with weakly labelled examples in our framework provides significant gains. We demonstrate this on the LVIS dataset (3.5% gain in AP) as well as different lowshot variants of the COCO dataset. We provide a thorough analysis of the effect of amount of weakly labelled and fully labelled data required to train the detection model. Our DLWL framework can also outperform self-supervised baselines like omni-supervision for lowshot classes.

Download the Paper

AUTHORS

Publisher

CVPR

Research Topics

Computer Vision

Related Publications

October 31, 2024

HUMAN & MACHINE INTELLIGENCE

ROBOTICS

Digitizing Touch with an Artificial Multimodal Fingertip

Mike Lambeta, Tingfan Wu, Ali Sengül, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra

October 31, 2024

October 16, 2024

SPEECH & AUDIO

COMPUTER VISION

Movie Gen: A Cast of Media Foundation Models

Movie Gen Team

October 16, 2024

September 10, 2024

COMPUTER VISION

Video Editing via Factorized Diffusion Distillation

Uriel Singer, Amit Zohar, Yuval Kirstain, Shelly Sheynin, Adam Polyak, Devi Parikh, Yaniv Taigman

September 10, 2024

September 05, 2024

CONVERSATIONAL AI

NLP

Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Luke Zettlemoyer, Omer Levy, Xuezhe Ma

September 05, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.