Research

ML Applications

Discovering Motor Programs by Recomposing Demonstrations

April 26, 2020

Abstract

In this paper, we present an approach to learn recomposable motor primitives across large-scale and diverse manipulation demonstrations. Current approaches to decomposing demonstrations into primitives often assume manually defined primitives and bypass the difficulty of discovering these primitives. On the other hand, approaches in primitive discovery put restrictive assumptions on the complexity of a primitive, which limit applicability to narrow tasks. Our approach attempts to circumvent these challenges by jointly learning both the underlying motor primitives and recomposing these primitives to form the original demonstration. Through constraints on both the parsimony of primitive decomposition and the simplicity of a given primitive, we are able to learn a diverse set of motor primitives, as well as a coherent latent representation for these primitives. We demonstrate, both qualitatively and quantitatively, that our learned primitives capture semantically meaningful aspects of a demonstration. This allows us to compose these primitives in a hierarchical reinforcement learning setup to efficiently solve robotic manipulation tasks like reaching and pushing.

Download the Paper

Related Publications

November 27, 2022

Core Machine Learning

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 27, 2022

November 27, 2022

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

April 08, 2021

Responsible AI

Integrity

Towards measuring fairness in AI: the Casual Conversations dataset

Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, Cristian Canton Ferrer

April 08, 2021

April 30, 2018

The Role of Minimal Complexity Functions in Unsupervised Learning of Semantic Mappings | Facebook AI Research

Tomer Galanti, Lior Wolf, Sagie Benaim

April 30, 2018

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

Help Us Pioneer The Future of Ai

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.