February 24, 2025
Benchmark contamination poses a significant challenge to the reliability of Large Language Models (LLMs) evaluations, as it is difficult to assert whether a model has been trained on a test set. We introduce a solution to this problem by watermarking benchmarks before their release. The embedding involves reformulating the original questions with a watermarked LLM, in a way that does not alter the benchmark utility. During evaluation, we can detect "radioactivity", i.e., traces that the text watermarks leave in the model during training, using a theoretically grounded statistical test. We test our method by pre-training 1B models from scratch on 10B tokens with controlled benchmark contamination, and validate its effectiveness in detecting contamination on ARC-Easy, ARC-Challenge, and MMLU. Results show similar benchmark utility post-watermarking and successful contamination detection when models are contaminated enough to enhance performance, e.g. p-val =10−3 for +5% on ARC-Easy.
Publisher
arXiv
Research Topics
December 07, 2023
GenAI Cybersec Team, Manish Bhatt, Sahana Chennabasappa, Cyrus Nikolaidis, Shengye Wan, Ivan Evtimov, Dominik Gabi, Daniel Song, Faizan Ahmad, Cornelius Aschermann, Lorenzo Fontana, Sasha Frolov, Ravi Prakash Giri, Dhaval Kapil, Yiannis Kozyrakis, David LeBlanc, James Milazzo, Aleksandar Straumann, Gabriel Synnaeve, Varun Vontimitta, Spencer Whitman, Joshua Saxe
December 07, 2023
Foundational models
Our approach
Latest news
Foundational models