RESEARCH

COMPUTER VISION

Designing Network Design Spaces

April 26, 2020

Abstract

In this work, we present a new network design paradigm. Our goal is to help advance the understanding of network design and discover design principles that generalize across settings. Instead of focusing on designing individual network instances, we design network design spaces that parametrize populations of networks. The overall process is analogous to classic manual design of networks, but elevated to the design space level. Using our methodology we explore the structure aspect of network design and arrive at a low-dimensional design space consisting of simple, regular networks that we call RegNet. The core insight of the RegNet parametrization is surprisingly simple: widths and depths of good networks can be explained by a quantized linear function. We analyze the RegNet design space and arrive at interesting findings that do not match the current practice of network design. The RegNet design space provides simple and fast networks that work well across a wide range of flop regimes. Under comparable training settings and flops, the RegNet models outperform the popular EfficientNet models while being up to 5x faster on GPUs.

Download the Paper

AUTHORS

Written by

Raj Prateek Kosaraju

Kaiming He

Piotr Dollar

Ross Girshick

Ilija Radosavovic

Publisher

CVPR

Research Topics

Computer Vision

Related Publications

December 12, 2024

COMPUTER VISION

EvalGIM: A Library for Evaluating Generative Image Models

Melissa Hall, Oscar Mañas, Reyhane Askari, Mark Ibrahim, Candace Ross, Pietro Astolfi, Tariq Berrada Ifriqi, Marton Havasi, Yohann Benchetrit, Karen Ullrich, Carolina Braga, Abhishek Charnalia, Maeve Ryan, Mike Rabbat, Michal Drozdzal, Jakob Verbeek, Adriana Romero Soriano

December 12, 2024

December 11, 2024

COMPUTER VISION

Video Seal: Open and Efficient Video Watermarking

Pierre Fernandez, Hady Elsahar, Zeki Yalniz, Alexandre Mourachko

December 11, 2024

December 11, 2024

NLP

COMPUTER VISION

Meta CLIP 1.2

Hu Xu, Bernie Huang, Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Scott Yih, Philippe Brunet, Kim Hazelwood, Ramya Raghavendra, Daniel Li (FAIR), Saining Xie, Christoph Feichtenhofer

December 11, 2024

December 11, 2024

COMPUTER VISION

Measuring Deja Vu Memorization Efficiently

Narine Kokhlikyan, Bargav Jayaraman, Florian Bordes, Chuan Guo, Kamalika Chaudhuri

December 11, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.