December 11, 2020
We present a new class of learnable Riemannian manifolds with a metric parameterized by a deep neural network. The core manifold operations--specifically the Riemannian exponential and logarithmic maps--are solved using approximate numerical techniques. Input and parameter gradients are computed with an adjoint sensitivity analysis. This enables us to fit geodesics and distances with gradient-based optimization of both on-manifold values and the manifold itself. We demonstrate our method's capability to model smooth, flexible metric structures in graph embedding tasks.
Publisher
NeurIPS Workshop on Differential Geometry for ML
Research Topics
Core Machine Learning
January 02, 2025
Shukai Duan, Heng Ping, Nikos Kanakaris, Xiongye Xiao, Panagiotis Kyriakis, Nesreen K. Ahmed, Peiyu Zhang, Guixiang Ma, Mihai Capota, Shahin Nazarian, Theodore L. Willke, Paul Bogdan
January 02, 2025
December 18, 2024
Haider Al-Tahan, Quentin Garrido, Randall Balestriero, Diane Bouchacourt, Caner Hazirbas, Mark Ibrahim
December 18, 2024
December 12, 2024
December 12, 2024
December 12, 2024
Mubashara Akhtar, Omar Benjelloun, Costanza Conforti, Luca Foschini, Pieter Gijsbers, Joan Giner-Miguelez, Sujata Goswami, Nitisha Jain, Michalis Karamousadakis, Satyapriya Krishna, Michael Kuchnik, Sylvain Lesage, Quentin Lhoest, Pierre Marcenac, Manil Maskey, Peter Mattson, Luis Oala, Hamidah Oderinwale, Pierre Ruyssen, Tim Santos, Rajat Shinde, Elena Simperl, Arjun Suresh, Goeffry Thomas, Slava Tykhonov, Joaquin Vanschoren, Susheel Varma, Jos van der Velde, Steffen Vogler, Carole-Jean Wu, Luyao Zhang
December 12, 2024
Foundational models
Our approach
Latest news
Foundational models