CORE MACHINE LEARNING

Deep Riemannian Manifold Learning

December 11, 2020

Abstract

We present a new class of learnable Riemannian manifolds with a metric parameterized by a deep neural network. The core manifold operations--specifically the Riemannian exponential and logarithmic maps--are solved using approximate numerical techniques. Input and parameter gradients are computed with an adjoint sensitivity analysis. This enables us to fit geodesics and distances with gradient-based optimization of both on-manifold values and the manifold itself. We demonstrate our method's capability to model smooth, flexible metric structures in graph embedding tasks.

Download the Paper

AUTHORS

Written by

Brandon Amos

Max Nickel

Aaron Lou

Publisher

NeurIPS Workshop on Differential Geometry for ML

Research Topics

Core Machine Learning

Related Publications

July 21, 2024

CORE MACHINE LEARNING

From Neurons to Neutrons: A Case Study in Mechanistic Interpretability

Ouail Kitouni, Niklas Nolte, Samuel Pérez Díaz, Sokratis Trifinopoulos, Mike Williams

July 21, 2024

July 08, 2024

THEORY

CORE MACHINE LEARNING

An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes

Antonio Orvieto, Lin Xiao

July 08, 2024

June 17, 2024

HUMAN & MACHINE INTELLIGENCE

COMPUTER VISION

D-Flow: Differentiating through Flows for Controlled Generation

Heli Ben-Hamu, Omri Puny, Itai Gat, Brian Karrer, Uriel Singer, Yaron Lipman

June 17, 2024

June 17, 2024

COMPUTER VISION

CORE MACHINE LEARNING

Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models

Neta Shaul, Uriel Singer, Ricky Chen, Matt Le, Ali Thabet, Albert Pumarola, Yaron Lipman

June 17, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.