CORE MACHINE LEARNING

Deep Riemannian Manifold Learning

December 11, 2020

Abstract

We present a new class of learnable Riemannian manifolds with a metric parameterized by a deep neural network. The core manifold operations--specifically the Riemannian exponential and logarithmic maps--are solved using approximate numerical techniques. Input and parameter gradients are computed with an adjoint sensitivity analysis. This enables us to fit geodesics and distances with gradient-based optimization of both on-manifold values and the manifold itself. We demonstrate our method's capability to model smooth, flexible metric structures in graph embedding tasks.

Download the Paper

AUTHORS

Written by

Brandon Amos

Max Nickel

Aaron Lou

Publisher

NeurIPS Workshop on Differential Geometry for ML

Research Topics

Core Machine Learning

Related Publications

June 13, 2025

FAIRNESS

INTEGRITY

Measuring multi-calibration

Ido Guy, Daniel Haimovich, Fridolin Linder, Nastaran Okati, Lorenzo Perini, Niek Tax, Mark Tygert

June 13, 2025

June 11, 2025

ROBOTICS

COMPUTER VISION

CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models

Aaron Foss, Chloe Evans, Sasha Mitts, Koustuv Sinha, Ammar Rizvi, Justine T. Kao

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 11, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.