COMPUTER VISION

CORE MACHINE LEARNING

Debugging the Internals of Convolutional Networks

December 06, 2021

Abstract

The filters learned by Convolutional Neural Networks (CNNs) and the feature maps these filters compute are sensitive to convolution arithmetic. Several architectural choices that dictate this arithmetic can result in feature-map artifacts. These artifacts can interfere with the downstream task and impact the accuracy and robustness. We provide a number of visual-debugging means to surface feature-map artifacts and to analyze how they emerge in CNNs. Our means help analyze the impact of these artifacts on the weights learned by the model. Guided by our analysis, model developers can make informed architectural choices that can verifiably mitigate harmful artifacts and improve the model’s accuracy and its shift robustness.

Download the Paper

AUTHORS

Written by

Bilal Alsallakh

Narine Kokhlikyan

Vivek Miglani

Shubham Muttepawar

Edward Wang (EcoF)

Sara Zhang

David Adkins

Orion Reblitz-Richardson

Publisher

NeurIPS Workshop

Research Topics

Computer Vision

Core Machine Learning

Related Publications

June 13, 2025

FAIRNESS

INTEGRITY

Measuring multi-calibration

Ido Guy, Daniel Haimovich, Fridolin Linder, Nastaran Okati, Lorenzo Perini, Niek Tax, Mark Tygert

June 13, 2025

June 11, 2025

ROBOTICS

COMPUTER VISION

CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models

Aaron Foss, Chloe Evans, Sasha Mitts, Koustuv Sinha, Ammar Rizvi, Justine T. Kao

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 11, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.