Research

Computer Vision

DDRNet: Depth Map Denoising and Refinement for Consumer Depth Cameras Using Cascaded CNNs

September 9, 2018

Abstract

Consumer depth sensors are more and more popular and come to our daily lives marked by its recent integration in the latest iPhone X. However, they still suffer from heavy noises which dramatically limit their applications. Although plenty of progresses have been made to reduce the noises and boost geometric details, due to the inherent illness and the real-time requirement, the problem is still far from been solved. We propose a cascaded Depth Denoising and Refinement Network (DDRNet) to tackle this problem by leveraging the multi-frame fused geometry and the accompanying high quality color image through a joint training strategy. The classic rendering equation is delicately exploited in our network in an unsupervised manner. Experimental results indicate that our network achieves real-time denoising and refinement on various categories of static and dynamic scenes. Thanks to the well decoupling of the low and high frequency information in the cascaded network, we achieve superior performance over the state-of-the-art techniques.

Download the Paper

Related Publications

November 10, 2022

Computer Vision

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

November 06, 2022

Computer Vision

Neural Basis Models for Interpretability

Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan

November 06, 2022

October 25, 2022

Theseus: A Library for Differentiable Nonlinear Optimization

Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi

October 25, 2022

October 22, 2022

Computer Vision

Time-rEversed diffusioN tEnsor Transformer: A new TENET of Few-Shot Object Detection

Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang

October 22, 2022

April 30, 2018

Computer Vision

NAM – Unsupervised Cross-Domain Image Mapping without Cycles or GANs | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

December 11, 2019

Speech & Audio

Computer Vision

Hyper-Graph-Network Decoders for Block Codes | Facebook AI Research

Eliya Nachmani, Lior Wolf

December 11, 2019

April 30, 2018

NLP

Speech & Audio

Identifying Analogies Across Domains | Facebook AI Research

Yedid Hoshen, Lior Wolf

April 30, 2018

November 01, 2018

NLP

Computer Vision

Non-Adversarial Unsupervised Word Translation | Facebook AI Research

Yedid Hoshen, Lior Wolf

November 01, 2018

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.