September 24, 2025
We release Code World Model (CWM), a 32-billion-parameter open-weights LLM, to advance research on code generation with world models. To improve code understanding beyond what can be learned from training on static code alone, we mid-train CWM on a large amount of observation-action trajectories from Python interpreter and agentic Docker environments, and perform extensive multi- task reasoning RL in verifiable coding, math, and multi-turn software engineering environments. With CWM, we provide a strong testbed for researchers to explore the opportunities world modeling affords for improving code generation with reasoning and planning in computational environments. We present first steps of how world models can benefit agentic coding, enable step-by-step simulation of Python code execution, and show early results of how reasoning can benefit from the latter. CWM is a dense, decoder-only LLM trained with a context size of up to 131 k tokens. Independent of its world modeling capabilities, CWM offers strong performance on general coding and math tasks: it reaches pass@1 scores of 65.8 % on SWE-bench Verified (with test-time scaling), 68.6 % on LiveCodeBench, 96.6 % on Math-500, and 76.0 % on AIME 2024. To support further research on code world modeling, we release model checkpoints after mid-training, SFT, and RL.
Written by
Jade Copet
Quentin Carbonneaux
Gal Cohen
Jonas Gehring
Jannik Kossen
Felix Kreuk
Emily McMilin
Michel Meyer
Yuxiang Wei
David Zhang
Kunhao Zheng
Jordi Armengol Estape
Pedram Bashiri
Maximilian Beck
Pierre Chambon
Abhishek Charnalia
Chris Cummins
Juliette Decugis
Zacharias Fisches
François Fleuret
Fabian Gloeckle
Alex Gu
Michael Hassid
Daniel Haziza
Badr Youbi Idrissi
Christian Keller
Rahul Kindi
Hugh Leather
Gallil Maimon
Aram Markosyan
Francisco Massa
Pierre-Emmanuel Mazaré
Vegard Mella
Naila Murray
Keyur Muzumdar
Peter O'Hearn
Matteo Pagliardini
Dmitrii Pedchenko
Tal Remez
Volker Seeker
Marco Selvi
Oren Sultan
Luca Wehrstedt
Ori Yoran
Lingming Zhang
Taco Cohen
Publisher
arXiv
November 10, 2025
Omnilingual ASR team, Gil Keren, Artyom Kozhevnikov, Yen Meng, Christophe Ropers, Matthew Setzler, Skyler Wang, Ife Adebara, Michael Auli, Can Balioglu, Kevin Chan, Chierh Cheng, Joe Chuang, Caley Drooff, Mark Duppenthaler, Paul-Ambroise Duquenne, Alexander Erben, Cynthia Gao, Gabriel Mejia Gonzalez, Kehan Lyu, Sagar Miglani, Vineel Pratap, Kaushik Ram Sadagopan, Safiyyah Saleem, Arina Turkatenko, Albert Ventayol-Boada, Zheng-Xin Yong, Yu-An Chung, Jean Maillard, Rashel Moritz, Alexandre Mourachko, Mary Williamson, Shireen Yates
November 10, 2025
October 19, 2025
Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal
October 19, 2025
October 13, 2025
Chenyu Wang, Paria Rashidinejad, DiJia Su, Song Jiang, Sid Wang, Siyan Zhao, Cai Zhou, Shannon Zejiang Shen, Feiyu Chen, Tommi Jaakkola, Yuandong Tian, Bo Liu
October 13, 2025
September 24, 2025
Dulhan Jayalath, Shashwat Goel, Thomas Simon Foster, Parag Jain, Suchin Gururangan, Cheng Zhang, Anirudh Goyal, Alan Schelten
September 24, 2025

Our approach
Latest news
Foundational models