CORE MACHINE LEARNING

CrypTen: Secure Multi-Party Computation Meets Machine Learning

October 18, 2021

Abstract

Secure multi-party computation (MPC) allows parties to perform computations on data while keeping that data private. This capability has great potential for machine-learning applications: it facilitates training of machine-learning models on private data sets owned by different parties, evaluation of one party's private model using another party's private data, etc. Although a range of studies implement machine-learning models via secure MPC, such implementations are not yet mainstream. Adoption of secure MPC is hampered by the absence of flexible software frameworks that ``speak the language'' of machine-learning researchers and engineers. To foster adoption of secure MPC in machine learning, we present CrypTen: a software framework that exposes popular secure MPC primitives via abstractions that are common in modern machine-learning frameworks, such as tensor computations, automatic differentiation, and modular neural networks. This paper describes the design of CrypTen and measure its performance on state-of-the-art models for text classification, speech recognition, and image classification. Our benchmarks show that CrypTen's GPU support and high-performance communication between (an arbitrary number of) parties allows it to perform efficient private evaluation of modern machine-learning models under a semi-honest threat model. For example, two parties using CrypTencan securely predict phonemes in speech recordings using Wav2Letter faster than real-time. We hope that CrypTen will spur adoption of secure MPC in the machine-learning community.

Download the Paper

AUTHORS

Written by

Brian Knott

Shobha Venkataraman

Awni Hannun

Shubho Sengupta

Mark Ibrahim

Laurens van der Maaten

Publisher

NeurIPS

Research Topics

Core Machine Learning

Related Publications

August 12, 2024

CORE MACHINE LEARNING

Contrastive Predict-and-Search for Mixed Integer Linear Programs

Arman Zharmagambetov, Yuandong Tian, Aaron Ferber, Bistra Dilkina, Taoan Huang

August 12, 2024

August 09, 2024

CORE MACHINE LEARNING

Benchmarking Attacks on Learning with Errors

Emily Wenger, Eshika Saxena, Mohamed Malhou, Ellie Thieu, Kristin Lauter

August 09, 2024

August 02, 2024

CORE MACHINE LEARNING

GenCO: Generating Diverse Designs with Combinatorial Constraints

Arman Zharmagambetov, Yuandong Tian

August 02, 2024

July 29, 2024

COMPUTER VISION

CORE MACHINE LEARNING

Factorizing Text-to-Video Generation by Explicit Image Conditioning

Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Saketh Rambhatla, Mian Akbar Shah, Xi Yin, Devi Parikh, Ishan Misra

July 29, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.