RESEARCH

COMPUTER VISION

Cross-channel Communication Networks

November 15, 2019

Abstract

Convolutional neural networks process input data by sending channel-wise feature response maps to subsequent layers. While a lot of progress has been made by making networks deeper, information from each channel can only be propagated from lower levels to higher levels in a hierarchical feed-forward manner. When viewing each filter in the convolutional layer as a neuron, those neurons are not communicating explicitly within each layer in CNNs. We introduce a novel network unit called Cross-channel Communication (C3) block, a simple yet effective module to encourage the neuron communication within the same layer. The C3 block enables neurons to exchange information through a micro neural network, which consists of a feature encoder, a message communicator, and a feature decoder, before sending the information to the next layer. With C3 block, each neuron accounts for the channel-wise responses from other neurons at the same layer and learns more discriminative and complementary representations. Extensive experiments for multiple computer vision tasks show that our proposed mechanism allows shallower networks to aggregate useful information within each layer, and performances outperform baseline deep networks and other competitive methods.

Download the Paper

AUTHORS

Written by

Devi Parikh

Chuang Gan

Hongyuan Zhu

Ji Lin

Jianwei Yang

Zhile Ren

Publisher

NeurIPS

Research Topics

Computer Vision

Related Publications

April 17, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

April 17, 2025

COMPUTER VISION

Perception Encoder: The best visual embeddings are not at the output of the network

Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu Ma, Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, Junke Wang, Marco Monteiro, Hu Xu, Shiyu Dong, Nikhila Ravi, Daniel Li (FAIR), Piotr Dollar, Christoph Feichtenhofer

April 17, 2025

April 17, 2025

COMPUTER VISION

PerceptionLM: Open-Access Data and Models for Detailed Visual Understanding

Jang Hyun Cho, Andrea Madotto, Effrosyni Mavroudi, Triantafyllos Afouras, Tushar Nagarajan, Muhammad Maaz, Yale Song, Tengyu Ma, Shuming Hu, Hanoona Rasheed, Peize Sun, Po-Yao Huang, Daniel Bolya, Suyog Jain, Miguel Martin, Huiyu Wang, Nikhila Ravi, Shashank Jain, Tammy Stark, Shane Moon, Babak Damavandi, Vivian Lee, Andrew Westbury, Salman Khan, Philipp Krähenbühl, Piotr Dollar, Lorenzo Torresani, Kristen Grauman, Christoph Feichtenhofer

April 17, 2025

April 17, 2025

ROBOTICS

RESEARCH

Locate 3D: Real-World Object Localization via Self-Supervised Learning in 3D

Paul McVay, Sergio Arnaud, Ada Martin, Arjun Majumdar, Krishna Murthy Jatavallabhula, Phillip Thomas, Ruslan Partsey, Daniel Dugas, Abha Gejji, Alexander Sax, Vincent-Pierre Berges, Mikael Henaff, Ayush Jain, Ang Cao, Ishita Prasad, Mrinal Kalakrishnan, Mike Rabbat, Nicolas Ballas, Mido Assran, Oleksandr Maksymets, Aravind Rajeswaran, Franziska Meier

April 17, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.