CORE MACHINE LEARNING

SYSTEMS RESEARCH

Croissant: A Metadata Format for ML-Ready Datasets

December 12, 2024

Abstract

Data is a critical resource for machine learning (ML), yet working with data remains a key friction point. This paper introduces Croissant, a metadata format for datasets that creates a shared representation across ML tools, frameworks, and platforms. Croissant makes datasets more discoverable, portable, and interoperable, thereby addressing significant challenges in ML data management. Croissant is already supported by several popular dataset repositories, spanning hundreds of thousands of datasets, enabling easy loading into the most commonly-used ML frameworks, regardless of where the data is stored. Our initial evaluation by human raters shows that Croissant metadata is readable, understandable, complete, yet concise.

Download the Paper

AUTHORS

Written by

Mubashara Akhtar

Omar Benjelloun

Costanza Conforti

Luca Foschini

Pieter Gijsbers

Joan Giner-Miguelez

Sujata Goswami

Nitisha Jain

Michalis Karamousadakis

Satyapriya Krishna

Michael Kuchnik

Sylvain Lesage

Quentin Lhoest

Pierre Marcenac

Manil Maskey

Peter Mattson

Luis Oala

Hamidah Oderinwale

Pierre Ruyssen

Tim Santos

Rajat Shinde

Elena Simperl

Arjun Suresh

Goeffry Thomas

Slava Tykhonov

Joaquin Vanschoren

Susheel Varma

Jos van der Velde

Steffen Vogler

Carole-Jean Wu

Luyao Zhang

Publisher

NeurIPS

Research Topics

Systems Research

Core Machine Learning

Related Publications

November 11, 2025

COMPUTER VISION

SYSTEMS RESEARCH

CATransformers: Carbon Aware Transformers Through Joint Model-Hardware Optimization

Irene Wang, Mostafa Elhouishi, Ekin Sumbul, Samuel Hsia, Daniel Jiang, Newsha Ardalani, Divya Mahajan, Carole-Jean Wu, Bilge Acun

November 11, 2025

October 13, 2025

REINFORCEMENT LEARNING

RESEARCH

SPG: Sandwiched Policy Gradient for Masked Diffusion Language Models

Chenyu Wang, Paria Rashidinejad, DiJia Su, Song Jiang, Sid Wang, Siyan Zhao, Cai Zhou, Shannon Zejiang Shen, Feiyu Chen, Tommi Jaakkola, Yuandong Tian, Bo Liu

October 13, 2025

September 24, 2025

RESEARCH

NLP

CWM: An Open-Weights LLM for Research on Code Generation with World Models

Jade Copet, Quentin Carbonneaux, Gal Cohen, Jonas Gehring, Jacob Kahn, Jannik Kossen, Felix Kreuk, Emily McMilin, Michel Meyer, Yuxiang Wei, David Zhang, Kunhao Zheng, Jordi Armengol Estape, Pedram Bashiri, Maximilian Beck, Pierre Chambon, Abhishek Charnalia, Chris Cummins, Juliette Decugis, Zacharias Fisches, François Fleuret, Fabian Gloeckle, Alex Gu, Michael Hassid, Daniel Haziza, Badr Youbi Idrissi, Christian Keller, Rahul Kindi, Hugh Leather, Gallil Maimon, Aram Markosyan, Francisco Massa, Pierre-Emmanuel Mazaré, Vegard Mella, Naila Murray, Keyur Muzumdar, Peter O'Hearn, Matteo Pagliardini, Dmitrii Pedchenko, Tal Remez, Volker Seeker, Marco Selvi, Oren Sultan, Sida Wang, Luca Wehrstedt, Ori Yoran, Lingming Zhang, Taco Cohen, Yossi Adi, Gabriel Synnaeve

September 24, 2025

August 22, 2025

CORE MACHINE LEARNING

Deep Think with Confidence

Yichao Fu, Xuewei Wang, Yuandong Tian, Jiawei Zhao

August 22, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.