RESEARCH

Correlated Uncertainty for Learning Dense Correspondences from Noisy Labels

December 04, 2019

Abstract

Many machine learning methods depend on human supervision to achieve optimal performance. However, in tasks such as DensePose, where the goal is to establish dense visual correspondences between images, the quality of manual annotations is intrinsically limited. We address this issue by augmenting neural network predictors with the ability to output a distribution over labels, thus explicitly and introspectively capturing the aleatoric uncertainty in the annotations. Compared to previous works, we show that correlated error fields arise naturally in applications such as DensePose and these fields can be modelled by deep networks, leading to a better understanding of the annotation errors. We show that these models, by understanding uncertainty better, can solve the original DensePose task more accurately, thus setting the new state-of-the-art accuracy in this benchmark. Finally, we demonstrate the utility of the uncertainty estimates in fusing the predictions produced by multiple models, resulting in a better and more principled approach to model ensembling which can further improve accuracy.

Download the Paper

AUTHORS

Written by

Natalia Neverova

Andrea Vedaldi

David Novotny

Publisher

NeurIPS

Related Publications

November 28, 2022

RESEARCH

CORE MACHINE LEARNING

Neural Attentive Circuits

Nicolas Ballas, Bernhard Schölkopf, Chris Pal, Francesco Locatello, Li Erran, Martin Weiss, Nasim Rahaman, Yoshua Bengio

November 28, 2022

November 27, 2022

RESEARCH

Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs

Andrea Tirinzoni, Aymen Al Marjani, Emilie Kaufmann

November 27, 2022

November 16, 2022

RESEARCH

NLP

Memorization Without Overfitting: Analyzing the Training Dynamics of Large Language Models

Kushal Tirumala, Aram H. Markosyan, Armen Aghajanyan, Luke Zettlemoyer

November 16, 2022

November 10, 2022

RESEARCH

COMPUTER VISION

Learning State-Aware Visual Representations from Audible Interactions

Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado

November 10, 2022

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.