SPEECH & AUDIO

Correction Focused Language Model Training for Speech Recognition

March 01, 2024

Abstract

Language models (LMs) have been commonly adopted to boost the performance of automatic speech recognition (ASR) particularly in domain adaptation tasks. Conventional way of LM training treats all the words in corpora equally, resulting in suboptimal improvements in ASR performance. In this work, we introduce a novel correction focused LM training approach which aims to prioritize ASR fallible words. The word-level ASR fallibility score, representing the likeli- hood of ASR mis-recognition, is defined and shaped as a prior word distribution to guide the LM training. To enable correction focused training with text-only corpora, large language models (LLMs) are employed as fallibility score predictors and text generators through multi-task fine-tuning. Experimental results for domain adaptation tasks demonstrate the effectiveness of our proposed method. Com- pared with conventional LMs, correction focused training achieves up to relatively 5.5% word error rate (WER) reduction in sufficient text scenarios. In insufficient text scenarios, LM training with LLM- generated text achieves up to relatively 13% WER reduction, while correction focused training further obtains up to relatively 6% WER reduction.

Download the Paper

AUTHORS

Written by

Yingyi Ma

Zhe Liu

Ozlem Kalinli

Publisher

ICASSP

Research Topics

Speech & Audio

Related Publications

October 16, 2024

SPEECH & AUDIO

COMPUTER VISION

Movie Gen: A Cast of Media Foundation Models

Movie Gen Team

October 16, 2024

October 04, 2024

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Beyond Turn-Based Interfaces: Synchronous LLMs as Full-Duplex Dialogue Agents

Bandhav Veluri, Benjamin Peloquin, Bokai Yu, Hongyu Gong, Shyam Gollakota

October 04, 2024

September 26, 2024

SPEECH & AUDIO

NLP

Unveiling the Role of Pretraining in Direct Speech Translation

Belen Alastruey, Gerard I. Gállego, Marta R. Costa-jussa

September 26, 2024

August 23, 2024

SPEECH & AUDIO

Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization

Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, Soujanya Poria

August 23, 2024

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.