Research

CopyCatch: Stopping Group Attacks by Spotting Lockstep Behavior in Social Networks

May 13, 2013

Abstract

In this paper we focus on the social network Facebook and the problem of discerning ill-gotten Page Likes, made by spammers hoping to turn a profit, from legitimate Page Likes. Our method, which we refer to as CopyCatch, detects lockstep Page Like patterns on Facebook by analyzing only the social graph between users and Pages and the times at which the edges in the graph (the Likes) were created.

We offer the following contributions: (1) We give a novel problem formulation, with a simple concrete definition of suspicious behavior in terms of graph structure and edge constraints. (2) We offer two algorithms to find such suspicious lockstep behavior – one provably-convergent iterative algorithm and one approximate, scalable MapReduce implementation. (3) We show that our method severely limits “greedy attacks” and analyze the bounds from the application of the Zarankiewicz problem to our setting.

Finally, we demonstrate and discuss the effectiveness of CopyCatch at Facebook and on synthetic data, as well as potential extensions to anomaly detection problems in other domains. CopyCatch is actively in use at Facebook, searching for attacks on Facebook’s social graph of over a billion users, many millions of Pages, and billions of Page Likes.

Download the Paper

Related Publications

October 18, 2025

NLP

Controlling Multimodal LLMs via Reward-guided Decoding

Oscar Mañas, Pierluca D'Oro, Koustuv Sinha, Adriana Romero Soriano, Michal Drozdzal, Aishwarya Agrawal

October 18, 2025

October 13, 2025

Reinforcement Learni9ng

SPG: Sandwiched Policy Gradient for Masked Diffusion Language Models

Chenyu Wang, Paria Rashidinejad, DiJia Su, Song Jiang, Sid Wang, Siyan Zhao, Cai Zhou, Shannon Zejiang Shen, Feiyu Chen, Tommi Jaakkola, Yuandong Tian, Bo Liu

October 13, 2025

September 24, 2025

NLP

CWM: An Open-Weights LLM for Research on Code Generation with World Models

Jade Copet, Quentin Carbonneaux, Gal Cohen, Jonas Gehring, Jacob Kahn, Jannik Kossen, Felix Kreuk, Emily McMilin, Michel Meyer, Yuxiang Wei, David Zhang, Kunhao Zheng, Jordi Armengol Estape, Pedram Bashiri, Maximilian Beck, Pierre Chambon, Abhishek Charnalia, Chris Cummins, Juliette Decugis, Zacharias Fisches, François Fleuret, Fabian Gloeckle, Alex Gu, Michael Hassid, Daniel Haziza, Badr Youbi Idrissi, Christian Keller, Rahul Kindi, Hugh Leather, Gallil Maimon, Aram Markosyan, Francisco Massa, Pierre-Emmanuel Mazaré, Vegard Mella, Naila Murray, Keyur Muzumdar, Peter O'Hearn, Matteo Pagliardini, Dmitrii Pedchenko, Tal Remez, Volker Seeker, Marco Selvi, Oren Sultan, Sida Wang, Luca Wehrstedt, Ori Yoran, Lingming Zhang, Taco Cohen, Yossi Adi, Gabriel Synnaeve

September 24, 2025

September 24, 2025

Conversational AI

Reinforcement Learni9ng

Compute as Teacher: Turning Inference Compute Into Reference-Free Supervision

Dulhan Jayalath, Shashwat Goel, Thomas Simon Foster, Parag Jain, Suchin Gururangan, Cheng Zhang, Anirudh Goyal, Alan Schelten

September 24, 2025

October 31, 2019

NLP

Facebook AI's WAT19 Myanmar-English Translation Task Submission

Peng-Jen Chen, Jiajun Shen, Matt Le, Vishrav Chaudhary, Ahmed El-Kishky, Guillaume Wenzek, Myle Ott, Marc’Aurelio Ranzato

October 31, 2019

October 27, 2019

Order-Aware Generative Modeling Using the 3D-Craft Dataset | Facebook AI Research

Zhuoyuan Chen, Demi Guo, Tong Xiao, Saining Xie, Xinlei Chen, Haonan Yu, Jonathan Gray, Kavya Srinet, Haoqi Fan, Jerry Ma, Charles R. Qi, Shubham Tulsiani, Arthur Szlam, Larry Zitnick

October 27, 2019

April 25, 2020

Energy-Based Models for Atomic-Resolution Protein Conformations | Facebook AI Research

Yilun Du, Joshua Meier, Jerry Ma, Rob Fergus, Alexander Rives

April 25, 2020

June 11, 2019

Computer Vision

ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero | Facebook AI Research

Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, Larry Zitnick

June 11, 2019

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.