March 12, 2019
In order to understand the organization of the cerebral cortex, it is necessary to create a map or parcellation of cortical areas. Reconstructions of the cortical surface created from structural MRI scans, are frequently used in neuroimaging as a common coordinate space for representing multimodal neuroimaging data. These meshes are used to investigate healthy brain organization as well as abnormalities in neurological and psychiatric conditions. We frame cerebral cortex parcellation as a mesh segmentation task, and address it by taking advantage of recent advances in generalizing convolutions to the graph domain. In particular, we propose to assess graph convolutional networks and graph attention networks, which, in contrast to previous mesh parcellation models, exploit the underlying structure of the data to make predictions. We show experimentally on the Human Connectome Project dataset that the proposed graph convolutional models outperform current state-of-the-art and baselines, highlighting the potential and applicability of these methods to tackle neuroimaging challenges, paving the road towards a better characterization of brain diseases.
November 10, 2022
Unnat Jain, Abhinav Gupta, Himangi Mittal, Pedro Morgado
November 10, 2022
November 06, 2022
Filip Radenovic, Abhimanyu Dubey, Dhruv Mahajan
November 06, 2022
October 25, 2022
Mustafa Mukadam, Austin Wang, Brandon Amos, Daniel DeTone, Jing Dong, Joe Ortiz, Luis Pineda, Maurizio Monge, Ricky Chen, Shobha Venkataraman, Stuart Anderson, Taosha Fan, Paloma Sodhi
October 25, 2022
October 22, 2022
Naila Murray, Lei Wang, Piotr Koniusz, Shan Zhang
October 22, 2022
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
December 11, 2019
Eliya Nachmani, Lior Wolf
December 11, 2019
April 30, 2018
Yedid Hoshen, Lior Wolf
April 30, 2018
November 01, 2018
Yedid Hoshen, Lior Wolf
November 01, 2018
Foundational models
Latest news
Foundational models